Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Carrollian Amplitudes from Strings (2402.14062v2)

Published 21 Feb 2024 in hep-th and gr-qc

Abstract: Carrollian holography is supposed to describe gravity in four-dimensional asymptotically flat space-time by the three-dimensional Carrollian CFT living at null infinity. We transform superstring scattering amplitudes into the correlation functions of primary fields of Carrollian CFT depending on the three-dimensional coordinates of the celestial sphere and a retarded time coordinate. The power series in the inverse string tension is converted to a whole tower of both UV and IR finite descendants of the underlying field-theoretical Carrollian amplitude. We focus on four-point amplitudes involving gauge bosons and gravitons in type I open superstring theory and in closed heterotic superstring theory at the tree-level. We also discuss the limit of infinite retarded time coordinates, where the string world-sheet becomes celestial.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (60)
  1. A. Strominger, “Lectures on the Infrared Structure of Gravity and Gauge Theory,” [arXiv:1703.05448 [hep-th]].
  2. A.M. Raclariu, “Lectures on Celestial Holography,” [arXiv:2107.02075 [hep-th]].
  3. S. Pasterski, “Lectures on celestial amplitudes,” Eur. Phys. J. C 81, no.12, 1062 (2021) doi:10.1140/epjc/s10052-021-09846-7 [arXiv:2108.04801 [hep-th]].
  4. S. Pasterski, M. Pate and A.M. Raclariu, “Celestial Holography,” [arXiv:2111.11392 [hep-th]].
  5. L. Donnay, “Celestial holography: An asymptotic symmetry perspective,” [arXiv:2310.12922 [hep-th]].
  6. S. Pasterski and S.H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D 96, no.6, 065022 (2017) doi:10.1103/PhysRevD.96.065022 [arXiv:1705.01027 [hep-th]].
  7. S. Pasterski, S.H. Shao and A. Strominger, “Gluon Amplitudes as 2d Conformal Correlators,” Phys. Rev. D 96, no.8, 085006 (2017) doi:10.1103/PhysRevD.96.085006 [arXiv:1706.03917 [hep-th]].
  8. L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, “Carrollian Perspective on Celestial Holography,” Phys. Rev. Lett. 129, no.7, 071602 (2022) doi:10.1103/PhysRevLett.129.071602 [arXiv:2202.04702 [hep-th]].
  9. A. Bagchi, S. Banerjee, R. Basu and S. Dutta, “Scattering Amplitudes: Celestial and Carrollian,” Phys. Rev. Lett. 128, no.24, 241601 (2022) doi:10.1103/PhysRevLett.128.241601 [arXiv:2202.08438 [hep-th]].
  10. L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, “Bridging Carrollian and celestial holography,” Phys. Rev. D 107, no.12, 126027 (2023) doi:10.1103/PhysRevD.107.126027 [arXiv:2212.12553 [hep-th]].
  11. S. Banerjee, S. Ghosh, P. Pandey and A. P. Saha, “Modified celestial amplitude in Einstein gravity,” JHEP 03, 125 (2020) doi:10.1007/JHEP03(2020)125 [arXiv:1909.03075 [hep-th]].
  12. S. Banerjee, S. Ghosh and R. Gonzo, “BMS symmetry of celestial OPE,” JHEP 04, 130 (2020) doi:10.1007/JHEP04(2020)130 [arXiv:2002.00975 [hep-th]].
  13. J. Salzer, “An embedding space approach to Carrollian CFT correlators for flat space holography,” JHEP 10, 084 (2023) doi:10.1007/JHEP10(2023)084 [arXiv:2304.08292 [hep-th]].
  14. K. Nguyen, “Carrollian conformal correlators and massless scattering amplitudes,” JHEP 01, 076 (2024) doi:10.1007/JHEP01(2024)076 [arXiv:2311.09869 [hep-th]].
  15. L. Mason, R. Ruzziconi and A. Yelleshpur Srikant, “Carrollian Amplitudes and Celestial Symmetries,” [arXiv:2312.10138 [hep-th]].
  16. W.B. Liu, J. Long and X.Q. Ye, “Feynman rules and loop structure of Carrollian amplitude,” [arXiv:2402.04120 [hep-th]].
  17. E. Have, K. Nguyen, S. Prohazka and J. Salzer, “Massive carrollian fields at timelike infinity,” [arXiv:2402.05190 [hep-th]].
  18. S. Stieberger and T.R. Taylor, “Strings on Celestial Sphere,” Nucl. Phys. B 935, 388-411 (2018) doi:10.1016/j.nuclphysb.2018.08.019 [arXiv:1806.05688 [hep-th]].
  19. W.B. Liu and J. Long, “Symmetry group at future null infinity: Scalar theory,” Phys. Rev. D 107, no.12, 126002 (2023) doi:10.1103/PhysRevD.107.126002 [arXiv:2210.00516 [hep-th]].
  20. S. Stieberger and T.R. Taylor, “New relations for Einstein–Yang–Mills amplitudes,” Nucl. Phys. B 913, 151-162 (2016) doi:10.1016/j.nuclphysb.2016.09.014 [arXiv:1606.09616 [hep-th]].
  21. H. Kawai, D.C. Lewellen and S.H.H. Tye, “A Relation Between Tree Amplitudes of Closed and Open Strings,” Nucl. Phys. B 269, 1-23 (1986) doi:10.1016/0550-3213(86)90362-7
  22. M.B. Green and J.H. Schwarz, “Supersymmetrical Dual String Theory. 2. Vertices and Trees,” Nucl. Phys. B 198, 252-268 (1982) doi:10.1016/0550-3213(82)90556-9
  23. J. Sondow and S.A. Zlobin, “Integrals over polytopes, multiple zeta values and polylogarithms, and Euler’s constant,” Mathematical Notes 84 (2008) 568-583.
  24. F. Brown and C. Dupont, “Single-valued integration and superstring amplitudes in genus zero,” Commun. Math. Phys. 382, no.2, 815-874 (2021) doi:10.1007/s00220-021-03969-4 [arXiv:1910.01107 [math.NT]].
  25. K.S. Kölbig, “Nielsen’s generalized polylogarithms,” SIAM J. Math. Anal. 17, 1232-1258 (1986) doi:10.1137/0517086
  26. K.S. Kölbig, J.A. Mignoco and E. Remiddi, “On Nielsen’s Generalized Polylogarithms And Their Numerical Calculation,” CERN-DD-CO-69-5.
  27. V. Adamchik, “On Stirling numbers and Euler sums,” J. Comput. Appl. Math. 79 (1997) 119–130.
  28. J.M. Borwein, D.M. Bradley and D.J. Broadhurst, “Evaluations of k𝑘kitalic_k–fold Euler/Zagier sums: A Compendium of results for arbitrary k𝑘kitalic_k,” [arXiv:hep-th/9611004 [hep-th]].
  29. V.G. Drinfeld, “On quasitriangular quasi-Hopf algebras and a group closely connected with G⁢a⁢l⁢(Q¯/Q)𝐺𝑎𝑙¯𝑄𝑄Gal(\bar{Q}/Q)italic_G italic_a italic_l ( over¯ start_ARG italic_Q end_ARG / italic_Q ),”. Algebra i Analiz 2:4 (1990),149-181. English transl.: Leningrad Math. J. 2 (1991), 829-860.
  30. S. Chmutov, S. Duzhin, and J. Mostovoy, “Introduction to Vassiliev Knot Invariants,” Cambridge University Press, 2012.
  31. D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, “Heterotic String Theory. 2. The Interacting Heterotic String,” Nucl. Phys. B 267, 75-124 (1986) doi:10.1016/0550-3213(86)90146-X
  32. S. Stieberger, “Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator,” J. Phys. A 47, 155401 (2014) doi:10.1088/1751-8113/47/15/155401 [arXiv:1310.3259 [hep-th]].
  33. S. Stieberger and T. R. Taylor, “Closed String Amplitudes as Single-Valued Open String Amplitudes,” Nucl. Phys. B 881, 269-287 (2014) doi:10.1016/j.nuclphysb.2014.02.005 [arXiv:1401.1218 [hep-th]].
  34. F. Brown, “Single-valued Motivic Periods and Multiple Zeta Values,” SIGMA 2, e25 (2014) doi:10.1017/fms.2014.18 [arXiv:1309.5309 [math.NT]].
  35. O. Schlotterer, “Amplitude relations in heterotic string theory and Einstein-Yang-Mills,” JHEP 11, 074 (2016) doi:10.1007/JHEP11(2016)074 [arXiv:1608.00130 [hep-th]].
  36. D.J. Gross and P. F. Mende, “The High-Energy Behavior of String Scattering Amplitudes,” Phys. Lett. B 197, 129-134 (1987) doi:10.1016/0370-2693(87)90355-8
  37. H.A. González, A. Puhm and F. Rojas, “Loop corrections to celestial amplitudes,” Phys. Rev. D 102, no.12, 126027 (2020) doi:10.1103/PhysRevD.102.126027 [arXiv:2009.07290 [hep-th]].
  38. N. Arkani-Hamed, M. Pate, A.M. Raclariu and A. Strominger, “Celestial amplitudes from UV to IR,” JHEP 08, 062 (2021) doi:10.1007/JHEP08(2021)062 [arXiv:2012.04208 [hep-th]].
  39. L. Magnea, “Non-abelian infrared divergences on the celestial sphere,” JHEP 05, 282 (2021) doi:10.1007/JHEP05(2021)282 [arXiv:2104.10254 [hep-th]].
  40. A. Ball, S.A. Narayanan, J. Salzer and A. Strominger, “Perturbatively exact w1+∞1{}_{1+\infty}start_FLOATSUBSCRIPT 1 + ∞ end_FLOATSUBSCRIPT asymptotic symmetry of quantum self-dual gravity,” JHEP 01, 114 (2022) doi:10.1007/JHEP01(2022)114 [arXiv:2111.10392 [hep-th]].
  41. K. Costello and N. M. Paquette, “Associativity of One-Loop Corrections to the Celestial Operator Product Expansion,” Phys. Rev. Lett. 129, no.23, 231604 (2022) doi:10.1103/PhysRevLett.129.231604 [arXiv:2204.05301 [hep-th]].
  42. L. Donnay, K. Nguyen and R. Ruzziconi, “Loop-corrected subleading soft theorem and the celestial stress tensor,” JHEP 09, 063 (2022) doi:10.1007/JHEP09(2022)063 [arXiv:2205.11477 [hep-th]].
  43. S. Pasterski, “A comment on loop corrections to the celestial stress tensor,” JHEP 01, 025 (2023) doi:10.1007/JHEP01(2023)025 [arXiv:2205.10901 [hep-th]].
  44. R. Bhardwaj, L. Lippstreu, L. Ren, M. Spradlin, A. Yelleshpur Srikant and A. Volovich, “Loop-level gluon OPEs in celestial holography,” JHEP 11, 171 (2022) doi:10.1007/JHEP11(2022)171 [arXiv:2208.14416 [hep-th]].
  45. R. Bittleston, “On the associativity of 1-loop corrections to the celestial operator product in gravity,” JHEP 01, 018 (2023) doi:10.1007/JHEP01(2023)018 [arXiv:2211.06417 [hep-th]].
  46. S. He, P. Mao and X. C. Mao, “Loop corrections versus marginal deformation in celestial holography,” [arXiv:2307.02743 [hep-th]].
  47. K. Costello, N. M. Paquette and A. Sharma, “Burns space and holography,” JHEP 10, 174 (2023) doi:10.1007/JHEP10(2023)174 [arXiv:2306.00940 [hep-th]].
  48. L. Donnay, G. Giribet, H. González, A. Puhm and F. Rojas, “Celestial open strings at one-loop,” JHEP 10, 047 (2023) doi:10.1007/JHEP10(2023)047 [arXiv:2307.03551 [hep-th]].
  49. H. Krishna, “Celestial gluon and graviton OPE at loop level,” [arXiv:2310.16687 [hep-th]].
  50. S. Banerjee, H. Kulkarni and P. Paul, “Celestial OPE in Self Dual Gravity,” [arXiv:2311.06485 [hep-th]].
  51. S. Stieberger, T.R. Taylor and B. Zhu, “Celestial Liouville theory for Yang-Mills amplitudes,” Phys. Lett. B 836, 137588 (2023) doi:10.1016/j.physletb.2022.137588 [arXiv:2209.02724 [hep-th]].
  52. T.R. Taylor and B. Zhu, “Celestial Supersymmetry,” JHEP 06, 210 (2023) doi:10.1007/JHEP06(2023)210 [arXiv:2302.12830 [hep-th]].
  53. S. Stieberger, T.R. Taylor and B. Zhu, “Yang-Mills as a Liouville theory,” Phys. Lett. B 846, 138229 (2023) doi:10.1016/j.physletb.2023.138229 [arXiv:2308.09741 [hep-th]].
  54. E. Hijano, “Flat space physics from AdS/CFT,” JHEP 07, 132 (2019) doi:10.1007/JHEP07(2019)132 [arXiv:1905.02729 [hep-th]].
  55. Y.Z. Li, “Notes on flat-space limit of AdS/CFT,” JHEP 09, 027 (2021) doi:10.1007/JHEP09(2021)027 [arXiv:2106.04606 [hep-th]].
  56. L.P. de Gioia and A.M. Raclariu, “Eikonal approximation in celestial CFT,” JHEP 03, 030 (2023) doi:10.1007/JHEP03(2023)030 [arXiv:2206.10547 [hep-th]].
  57. L.P. de Gioia and A.M. Raclariu, “Celestial Sector in CFT: Conformally Soft Symmetries,” [arXiv:2303.10037 [hep-th]].
  58. A. Bagchi, P. Dhivakar and S. Dutta, “AdS Witten diagrams to Carrollian correlators,” JHEP 04, 135 (2023) doi:10.1007/JHEP04(2023)135 [arXiv:2303.07388 [hep-th]].
  59. S. Duary, “Flat limit of massless scalar scattering in AdS2subscriptAdS2\mathrm{AdS}_{2}roman_AdS start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT,” [arXiv:2305.20037 [hep-th]].
  60. A. Bagchi, P. Dhivakar and S. Dutta, “Holography in Flat Spacetimes: the case for Carroll,” [arXiv:2311.11246 [hep-th]].
Citations (3)

Summary

We haven't generated a summary for this paper yet.