Towards multiloop local renormalization within Causal Loop-Tree Duality (2402.13995v2)
Abstract: Renormalization is a well-known technique to get rid of ultraviolet (UV) singularities. When relying on Dimensional Regularization (DREG), these become manifest as $\epsilon$-poles, allowing to define counter-terms with useful recursive properties. However, this procedure requires to work at \emph{integral-level} and poses difficulties to achieve a smooth combination with semi-numerical approaches. This article is devoted to the development of an integrand-level renormalization formalism, better suited for semi or fully numerical calculations. Starting from the Loop-Tree Duality (LTD), we keep the causal representations of the integrands of multiloop Feynman diagrams and explore their UV behaviour. Then, we propose a strategy that allows to build local counter-terms, capable of rendering the expressions integrable in the high-energy limit and in four space-time dimensions. Our procedure was tested on diagrams up to three-loops, and we found a remarkably smooth cancellation of divergences. The results of this work constitute a powerful step towards a fully local renormalization framework in QFT.
- G. Heinrich, Phys. Rept. 922, 1 (2021), arXiv:2009.00516 [hep-ph] .
- G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B44, 189 (1972).
- J. C. Collins, Renormalization, Cambridge Monographs on Mathematical Physics, Vol. 26 (Cambridge University Press, Cambridge, 2023).
- C. G. Bollini and J. J. Giambiagi, Nuovo Cim. B12, 20 (1972).
- J. F. Ashmore, Lett. Nuovo Cim. 4, 289 (1972).
- G. M. Cicuta and E. Montaldi, Lett. Nuovo Cim. 4, 329 (1972).
- T. Kinoshita, J. Math. Phys. 3, 650 (1962).
- For instance, see Ref. Baglio et al. (2022) and references therein.
- C. Anastasiou and G. Sterman, JHEP 07, 056 (2019), arXiv:1812.03753 [hep-ph] .
- C. Anastasiou and G. Sterman, JHEP 05, 242 (2023), arXiv:2212.12162 [hep-ph] .
- G. Sterman and A. Venkata, JHEP 02, 101 (2024), arXiv:2309.13023 [hep-ph] .
- J. Plenter, Acta Phys. Polon. B 50, 1983 (2019).
- J. Plenter and G. Rodrigo, Eur. Phys. J. C 81, 320 (2021), arXiv:2005.02119 [hep-ph] .
- J. Plenter, Asymptotic expansions and causal representations through the loop-tree duality, Ph.D. thesis, Valencia U., IFIC (2022).
- J. Aguilera-Verdugo et al., Symmetry 13, 1029 (2021a), arXiv:2104.14621 [hep-ph] .
- R. M. Prisco and F. Tramontano, JHEP 06, 089 (2021), arXiv:2012.05012 [hep-ph] .
- R. Pittau, JHEP 11, 151 (2012), arXiv:1208.5457 [hep-ph] .
- A. M. Donati and R. Pittau, Eur. Phys. J. C 74, 2864 (2014), arXiv:1311.3551 [hep-ph] .
- R. Pittau, Fortsch. Phys. 63, 601 (2015), arXiv:1408.5345 [hep-th] .
- B. Page and R. Pittau, JHEP 11, 183 (2015), arXiv:1506.09093 [hep-ph] .
- C. Gnendiger et al., Eur. Phys. J. C77, 471 (2017), arXiv:1705.01827 [hep-ph] .
- W. J. Torres Bobadilla et al., Eur. Phys. J. C 81, 250 (2021), arXiv:2012.02567 [hep-ph] .
- F. Driencourt-Mangin, Four-dimensional representation of scattering amplitudes and physical observables through the application of the Loop-Tree Duality theorem, Ph.D. thesis, U. Valencia (main) (2019), arXiv:1907.12450 [hep-ph] .
- E. Tomboulis, JHEP 05, 148 (2017), arXiv:1701.07052 [hep-th] .
- W. J. Torres Bobadilla, JHEP 04, 183 (2021), arXiv:2102.05048 [hep-ph] .
- G. F. R. Sborlini, Phys. Rev. D 104, 036014 (2021), arXiv:2102.05062 [hep-ph] .
- R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
- T. Hahn, Comput. Phys. Commun. 168, 78 (2005), arXiv:hep-ph/0404043 .