Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards multiloop local renormalization within Causal Loop-Tree Duality (2402.13995v2)

Published 21 Feb 2024 in hep-th and hep-ph

Abstract: Renormalization is a well-known technique to get rid of ultraviolet (UV) singularities. When relying on Dimensional Regularization (DREG), these become manifest as $\epsilon$-poles, allowing to define counter-terms with useful recursive properties. However, this procedure requires to work at \emph{integral-level} and poses difficulties to achieve a smooth combination with semi-numerical approaches. This article is devoted to the development of an integrand-level renormalization formalism, better suited for semi or fully numerical calculations. Starting from the Loop-Tree Duality (LTD), we keep the causal representations of the integrands of multiloop Feynman diagrams and explore their UV behaviour. Then, we propose a strategy that allows to build local counter-terms, capable of rendering the expressions integrable in the high-energy limit and in four space-time dimensions. Our procedure was tested on diagrams up to three-loops, and we found a remarkably smooth cancellation of divergences. The results of this work constitute a powerful step towards a fully local renormalization framework in QFT.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. G. Heinrich, Phys. Rept. 922, 1 (2021), arXiv:2009.00516 [hep-ph] .
  2. G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B44, 189 (1972).
  3. J. C. Collins, Renormalization, Cambridge Monographs on Mathematical Physics, Vol. 26 (Cambridge University Press, Cambridge, 2023).
  4. C. G. Bollini and J. J. Giambiagi, Nuovo Cim. B12, 20 (1972).
  5. J. F. Ashmore, Lett. Nuovo Cim. 4, 289 (1972).
  6. G. M. Cicuta and E. Montaldi, Lett. Nuovo Cim. 4, 329 (1972).
  7. T. Kinoshita, J. Math. Phys. 3, 650 (1962).
  8. For instance, see Ref. Baglio et al. (2022) and references therein.
  9. C. Anastasiou and G. Sterman, JHEP 07, 056 (2019), arXiv:1812.03753 [hep-ph] .
  10. C. Anastasiou and G. Sterman, JHEP 05, 242 (2023), arXiv:2212.12162 [hep-ph] .
  11. G. Sterman and A. Venkata, JHEP 02, 101 (2024), arXiv:2309.13023 [hep-ph] .
  12. J. Plenter, Acta Phys. Polon. B 50, 1983 (2019).
  13. J. Plenter and G. Rodrigo, Eur. Phys. J. C 81, 320 (2021), arXiv:2005.02119 [hep-ph] .
  14. J. Plenter, Asymptotic expansions and causal representations through the loop-tree duality, Ph.D. thesis, Valencia U., IFIC (2022).
  15. J. Aguilera-Verdugo et al., Symmetry 13, 1029 (2021a), arXiv:2104.14621 [hep-ph] .
  16. R. M. Prisco and F. Tramontano, JHEP 06, 089 (2021), arXiv:2012.05012 [hep-ph] .
  17. R. Pittau, JHEP 11, 151 (2012), arXiv:1208.5457 [hep-ph] .
  18. A. M. Donati and R. Pittau, Eur. Phys. J. C 74, 2864 (2014), arXiv:1311.3551 [hep-ph] .
  19. R. Pittau, Fortsch. Phys. 63, 601 (2015), arXiv:1408.5345 [hep-th] .
  20. B. Page and R. Pittau, JHEP 11, 183 (2015), arXiv:1506.09093 [hep-ph] .
  21. C. Gnendiger et al., Eur. Phys. J. C77, 471 (2017), arXiv:1705.01827 [hep-ph] .
  22. W. J. Torres Bobadilla et al., Eur. Phys. J. C 81, 250 (2021), arXiv:2012.02567 [hep-ph] .
  23. F. Driencourt-Mangin, Four-dimensional representation of scattering amplitudes and physical observables through the application of the Loop-Tree Duality theorem, Ph.D. thesis, U. Valencia (main) (2019), arXiv:1907.12450 [hep-ph] .
  24. E. Tomboulis, JHEP 05, 148 (2017), arXiv:1701.07052 [hep-th] .
  25. W. J. Torres Bobadilla, JHEP 04, 183 (2021), arXiv:2102.05048 [hep-ph] .
  26. G. F. R. Sborlini, Phys. Rev. D 104, 036014 (2021), arXiv:2102.05062 [hep-ph] .
  27. R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
  28. T. Hahn, Comput. Phys. Commun. 168, 78 (2005), arXiv:hep-ph/0404043 .
Citations (3)

Summary

We haven't generated a summary for this paper yet.