Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agent Online Graph Exploration on Cycles and Tadpole Graphs (2402.13845v2)

Published 21 Feb 2024 in cs.DS and cs.DC

Abstract: We study the problem of multi-agent online graph exploration, in which a team of k agents has to explore a given graph, starting and ending on the same node. The graph is initially unknown. Whenever a node is visited by an agent, its neighborhood and adjacent edges are revealed. The agents share a global view of the explored parts of the graph. The cost of the exploration has to be minimized, where cost either describes the time needed for the entire exploration (time model), or the length of the longest path traversed by any agent (energy model). We investigate graph exploration on cycles and tadpole graphs for 2-4 agents, providing optimal results on the competitive ratio in the energy model (1-competitive with two agents on cycles and three agents on tadpole graphs), and for tadpole graphs in the time model (1.5-competitive with four agents). We also show competitive upper bounds of 2 for the exploration of tadpole graphs with three agents, and 2.5 for the exploration of tadpole graphs with two agents in the time model.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. E. van den Akker, K. Buchin, and K. Foerster, “Brief announcement: Multi-agent online graph exploration on cycles and tadpole graphs,” in Proc. of 31st International Colloquium on Structural Information and Communication Complexity (SIROCCO 2024).
  2. B. Kalyanasundaram and K. Pruhs, “Constructing competitive tours from local information,” Theor. Comput. Sci., vol. 130, no. 1, pp. 125–138, 1994.
  3. M. Dynia, J. Lopuszanski, and C. Schindelhauer, “Why robots need maps,” in Proc. of 14th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2007) (G. Prencipe and S. Zaks, eds.), vol. 4474 of Lecture Notes in Computer Science, pp. 41–50, Springer, 2007.
  4. C. Ortolf and C. Schindelhauer, “Online multi-robot exploration of grid graphs with rectangular obstacles,” in Proc. of 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2012) (G. E. Blelloch and M. Herlihy, eds.), pp. 27–36, ACM, 2012.
  5. Y. Higashikawa, N. Katoh, S. Langerman, and S. Tanigawa, “Online graph exploration algorithms for cycles and trees by multiple searchers,” J. Comb. Optim., vol. 28, no. 2, pp. 480–495, 2014.
  6. K. Foerster and R. Wattenhofer, “Lower and upper competitive bounds for online directed graph exploration,” Theor. Comput. Sci., vol. 655, pp. 15–29, 2016.
  7. S. Brandt, K. Foerster, J. Maurer, and R. Wattenhofer, “Online graph exploration on a restricted graph class: Optimal solutions for tadpole graphs,” Theor. Comput. Sci., vol. 839, pp. 176–185, 2020.
  8. R. Fritsch, “Online graph exploration on trees, unicyclic graphs and cactus graphs,” Inf. Process. Lett., vol. 168, p. 106096, 2021.
  9. N. Megow, K. Mehlhorn, and P. Schweitzer, “Online graph exploration: New results on old and new algorithms,” Theor. Comput. Sci., vol. 463, pp. 62–72, 2012.
  10. J. Baligács, Y. Disser, I. Heinrich, and P. Schweitzer, “Exploration of graphs with excluded minors,” in Proc. of 31st Annual European Symposium on Algorithms (ESA 2023) (I. L. Gørtz, M. Farach-Colton, S. J. Puglisi, and G. Herman, eds.), vol. 274 of LIPIcs, pp. 11:1–11:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
  11. D. J. Rosenkrantz, R. E. Stearns, and P. M. L. II, “An analysis of several heuristics for the traveling salesman problem,” SIAM J. Comput., vol. 6, no. 3, pp. 563–581, 1977.
  12. A. Birx, Y. Disser, A. V. Hopp, and C. Karousatou, “An improved lower bound for competitive graph exploration,” Theor. Comput. Sci., vol. 868, pp. 65–86, 2021.
  13. S. Miyazaki, N. Morimoto, and Y. Okabe, “The online graph exploration problem on restricted graphs,” IEICE Trans. Inf. Syst., vol. 92-D, no. 9, pp. 1620–1627, 2009.
  14. P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. Pelc, “Collective tree exploration,” Networks, vol. 48, no. 3, pp. 166–177, 2006.
  15. C. Ortolf and C. Schindelhauer, “A recursive approach to multi-robot exploration of trees,” in Proc. of 21st International Colloquium on Structural Information and Communication Complexity (SIROCCO 2014) (M. M. Halldórsson, ed.), vol. 8576 of Lecture Notes in Computer Science, pp. 343–354, Springer, 2014.
  16. M. Dynia, M. Korzeniowski, and C. Schindelhauer, “Power-aware collective tree exploration,” in Proc. of 19th International Conference on Architecture of Computing Systems (ARCS 2006) (W. Grass, B. Sick, and K. Waldschmidt, eds.), vol. 3894 of Lecture Notes in Computer Science, pp. 341–351, Springer, 2006.
  17. M. Dynia, J. Kutylowski, F. M. auf der Heide, and C. Schindelhauer, “Smart robot teams exploring sparse trees,” in Proc. of 31st International Symposium on Mathematical Foundations of Computer Science 2006 (MFCS 2006) (R. Kralovic and P. Urzyczyn, eds.), vol. 4162 of Lecture Notes in Computer Science, pp. 327–338, Springer, 2006.
  18. D. Dereniowski, Y. Disser, A. Kosowski, D. Pajak, and P. Uznanski, “Fast collaborative graph exploration,” Inf. Comput., vol. 243, pp. 37–49, 2015.
  19. Y. Disser, F. Mousset, A. Noever, N. Skoric, and A. Steger, “A general lower bound for collaborative tree exploration,” Theor. Comput. Sci., vol. 811, pp. 70–78, 2020.
  20. M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. P. Vadhan, “The power of a pebble: Exploring and mapping directed graphs,” Inf. Comput., vol. 176, no. 1, pp. 1–21, 2002.
  21. Y. Disser, J. Hackfeld, and M. Klimm, “Tight bounds for undirected graph exploration with pebbles and multiple agents,” J. ACM, vol. 66, no. 6, pp. 40:1–40:41, 2019.
  22. E. Bampas, J. Chalopin, S. Das, J. Hackfeld, and C. Karousatou, “Maximal exploration of trees with energy-constrained agents,” CoRR, vol. abs/1802.06636, 2018.
  23. P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao, “Multirobot tree and graph exploration,” IEEE Trans. Robotics, vol. 27, no. 4, pp. 707–717, 2011.
  24. J. Czyzowicz, D. Dereniowski, L. Gasieniec, R. Klasing, A. Kosowski, and D. Pajak, “Collision-free network exploration,” J. Comput. Syst. Sci., vol. 86, pp. 70–81, 2017.
  25. D. Osula, “Minimizing the cost of team exploration,” in Proc. of 45th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2019) (B. Catania, R. Královic, J. R. Nawrocki, and G. Pighizzini, eds.), vol. 11376 of Lecture Notes in Computer Science, pp. 392–405, Springer, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.