Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Democratizing Uncertainty Quantification (2402.13768v5)

Published 21 Feb 2024 in cs.MS and stat.AP

Abstract: Uncertainty Quantification (UQ) is vital to safety-critical model-based analyses, but the widespread adoption of sophisticated UQ methods is limited by technical complexity. In this paper, we introduce UM-Bridge (the UQ and Modeling Bridge), a high-level abstraction and software protocol that facilitates universal interoperability of UQ software with simulation codes. It breaks down the technical complexity of advanced UQ applications and enables separation of concerns between experts. UM-Bridge democratizes UQ by allowing effective interdisciplinary collaboration, accelerating the development of advanced UQ methods, and making it easy to perform UQ analyses from prototype to High Performance Computing (HPC) scale. In addition, we present a library of ready-to-run UQ benchmark problems, all easily accessible through UM-Bridge. These benchmarks support UQ methodology research, enabling reproducible performance comparisons. We demonstrate UM-Bridge with several scientific applications, harnessing HPC resources even using UQ codes not designed with HPC support.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. doi:10.1017/S0962492910000061.
  2. doi:10.1016/0370-2693(87)91197-X.
  3. doi:10.1038/s41592-019-0686-2.
  4. doi:10.18637/jss.v076.i01.
  5. arXiv:2305.16951.
  6. arXiv:2305.16949.
  7. arXiv:1202.3665, doi:10.1086/670067.
  8. doi:10.21105/joss.03076.
  9. doi:10.1016/j.envsoft.2023.105825.
  10. doi:10.1145/3630023.
  11. doi:10.1016/j.softx.2023.101561.
  12. doi:10.1016/j.camwa.2020.02.022.
  13. doi:10.1137/21M1399464.
  14. doi:10.1007/978-3-319-11259-6_26-1.
  15. doi:10.1063/1.1699114.
  16. doi:10.21105/joss.04748.
  17. doi:10.1287/opre.1070.0496.
  18. doi:10.1137/130915005.
  19. arXiv:2012.05668.
  20. doi:10.1088/0266-5611/29/8/085010.
  21. doi:10.1137/22M1476770.
  22. doi:10.1137/140969002.
  23. doi:10.1615/Int.J.UncertaintyQuantification.2018021551.
  24. doi:10.1007/s00366-021-01588-0.
  25. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.6268, doi:10.1002/nme.6268.
  26. doi:10.5281/zenodo.8140508.
  27. doi:10.1371/journal.pone.0177459.
  28. arXiv:2211.13893.
  29. doi:10.1016/j.camwa.2020.06.007.
  30. doi:10.1016/j.cpc.2020.107251.
  31. doi:10.1016/j.compfluid.2018.01.031.
  32. doi:10.1145/3458817.3476150.
  33. doi:10.1198/106186005X76983.
  34. doi:10.1137/19M126966X.
  35. arXiv:2112.00713.
  36. doi:10.2172/1630694.
  37. arXiv:https://ascelibrary.org/doi/pdf/10.1061/9780784413609.257, doi:10.1061/9780784413609.257.
  38. doi:10.3384/ecp11063105.
  39. doi:10.12688/openreseurope.14445.2.
  40. arXiv:https://pubs.geoscienceworld.org/ssa/srl/article-pdf/80/1/119/2760745/119.pdf, doi:10.1785/gssrl.80.1.119.
  41. arXiv:https://pubs.geoscienceworld.org/ssa/srl/article-pdf/89/3/1146/4127122/srl-2017222.1.pdf, doi:10.1785/0220170222.
  42. arXiv:https://library.seg.org/doi/pdf/10.1190/segam2016-13841990.1, doi:10.1190/segam2016-13841990.1.
  43. arXiv:https://doi.org/10.1177/1094342020915762, doi:10.1177/1094342020915762.
  44. doi:10.1016/j.compstruct.2017.09.104.
  45. doi:10.1016/j.compstruct.2018.08.074.
  46. doi:10.1016/j.jnucmat.2015.06.041.
  47. doi:10.1016/j.nme.2019.100709.
  48. S. Dixon, Achlys: Isotope self-diffusion (Dec. 2021). doi:10.5281/zenodo.6412090.
  49. doi:10.1016/j.softx.2022.101202.
  50. doi:10.1093/femspd/fty059.
  51. doi:10.1515/jnma-2022-0054.
  52. doi:10.1007/978-3-642-15337-2_3.
  53. doi:10.1137/100799010.
  54. doi:10.1016/S0022-3115(02)01375-2.
  55. doi:10.1007/s11075-017-0430-x.
  56. doi:10.1016/j.jcp.2015.02.025.

Summary

We haven't generated a summary for this paper yet.