2000 character limit reached
A mixed finite-element, finite-volume, semi-implicit discretisation for atmospheric dynamics: Spherical geometry (2402.13738v1)
Published 21 Feb 2024 in math.NA, cs.NA, math-ph, and math.MP
Abstract: The reformulation of the Met Office's dynamical core for weather and climate prediction previously described by the authors is extended to spherical domains using a cubed-sphere mesh. This paper updates the semi-implicit mixed finite-element formulation to be suitable for spherical domains. In particular the finite-volume transport scheme is extended to take account of non-uniform, non-orthogonal meshes and uses an advective-then-flux formulation so that increment from the transport scheme is linear in the divergence. The resulting model is then applied to a standard set of dry dynamical core tests and compared to the existing semi-implicit semi-Lagrangian dynamical core currently used in the Met Office's operational model.
- Staniforth A, Thuburn J. Horizontal grids for global weather and climate prediction models: a review. Quarterly Journal of the Royal Meteorological Society 2012;138(662):1–26. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.958.
- Crossing the chasm: how to develop weather and climate models for next generation computers? Geoscientific Model Development 2018;11(5):1799–1821. https://gmd.copernicus.org/articles/11/1799/2018/.
- Cotter CJ, Shipton J. Mixed finite elements for numerical weather prediction. Journal of Computational Physics 2012;231(21):7076–7091. https://www.sciencedirect.com/science/article/pii/S0021999112002628.
- Cotter CJ, Thuburn J. A finite element exterior calculus framework for the rotating shallow-water equations. Journal of Computational Physics 2014;257:1506–1526. https://www.sciencedirect.com/science/article/pii/S0021999113006761, physics-compatible numerical methods.
- Thuburn J, Cotter CJ. A primal–dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes. Journal of Computational Physics 2015;290:274–297. https://www.sciencedirect.com/science/article/pii/S0021999115001151.
- Compatible finite element spaces for geophysical fluid dynamics. Dynamics and Statistics of the Climate System 2016;1(1).
- A mixed finite-element, finite-volume, semi-implicit discretization for atmospheric dynamics: Cartesian geometry. Quarterly Journal of the Royal Meteorological Society 2019;145(724):2835–2853. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3501.
- A mixed finite-element discretisation of the shallow-water equations. Geoscientific Model Development 2023;16(4):1265–1276. https://gmd.copernicus.org/articles/16/1265/2023/.
- Cotter CJ. Compatible finite element methods for geophysical fluid dynamics. Acta Numerica 2023;32:291–393.
- Arakawa A, Lamb VR. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. In: CHANG J, editor. General Circulation Models of the Atmosphere, vol. 17 of Methods in Computational Physics: Advances in Research and Applications Elsevier; 1977.p. 173–265. https://www.sciencedirect.com/science/article/pii/B9780124608177500094.
- Choice of function spaces for thermodynamic variables in mixed finite-element methods. Quarterly Journal of the Royal Meteorological Society 2018;144(712):900–916. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3268.
- Thuburn J, Woollings TJ. Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes. Journal of Computational Physics 2005;203(2):386–404. https://www.sciencedirect.com/science/article/pii/S0021999104003316.
- An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quarterly Journal of the Royal Meteorological Society 2014;140(682):1505–1520.
- Multigrid preconditioners for the mixed finite element dynamical core of the LFRic atmospheric model. Quarterly Journal of the Royal Meteorological Society 2020;146(733):3917–3936. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3880.
- Efficient Assembly of Hdiv and Hcurl Conforming Finite Elements. SIAM Journal on Scientific Computing 2010;31(6):4130–4151. https://doi.org/10.1137/08073901X.
- Bochev PB, Ridzal D. Rehabilitation of the lowest-order Raviart-Thomas element on quadrilateral grids. SIAM Journal on Numerical Analysis 2008;47(1):487–507. http://www.jstor.org/stable/25663133.
- The “Cubed Sphere”: A New Method for the Solution of Partial Differential Equations in Spherical Geometry. Journal of Computational Physics 1996;124(1):93–114. https://www.sciencedirect.com/science/article/pii/S0021999196900479.
- LFRic: Meeting the challenges of scalability and performance portability in Weather and Climate models. Journal of Parallel and Distributed Computing 2019;http://www.sciencedirect.com/science/article/pii/S0743731518305306.
- A Discontinuous Galerkin Transport Scheme on the Cubed Sphere. Monthly Weather Review 2005;133(4):814 – 828. https://journals.ametsoc.org/view/journals/mwre/133/4/mwr2890.1.xml.
- Strang G. On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical Analysis 1968;5(3):506–517. https://doi.org/10.1137/0705041.
- Automated Generation and Symbolic Manipulation of Tensor Product Finite Elements. SIAM Journal on Scientific Computing 2016;38(5):S25–S47. https://doi.org/10.1137/15M1021167.
- A solution to the trilemma of the moist Charney–Phillips staggering. Quarterly Journal of the Royal Meteorological Society 2023;149(750):262–276. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.4406.
- Butcher JC. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley; 1987. https://books.google.co.uk/books?id=SjXvAAAAMAAJ.
- A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids. Geoscientific Model Development 2014;7(3):909–929. https://gmd.copernicus.org/articles/7/909/2014/.
- Baldauf M. Stability analysis for linear discretisations of the advection equation with Runge–Kutta time integration. Journal of Computational Physics 2008;227(13):6638–6659. https://www.sciencedirect.com/science/article/pii/S0021999108001769.
- Skamarock WC, Menchaca M. Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Reconstructions for Forward-in-Time Schemes. Monthly Weather Review 2010;138(12):4497 – 4508. https://journals.ametsoc.org/view/journals/mwre/138/12/2010mwr3390.1.xml.
- Accessed: 10-12-2021. http://www-personal.umich.edu/~cjablono/DCMIP-2012_TestCaseDocument_v1.7.pdf.
- Allen T, Zerroukat M. A deep non-hydrostatic compressible atmospheric model on a Yin-Yang grid. Journal of Computational Physics 2016;319:44–60. https://www.sciencedirect.com/science/article/pii/S0021999116301590.
- A proposed baroclinic wave test case for deep- and shallow-atmosphere dynamical cores. Quarterly Journal of the Royal Meteorological Society 2014;140(682):1590–1602.
- Held IM, Suarez MJ. A Proposal for the Intercomparison of the Dynamical Cores of Atmospheric General Circulation Models. Bulletin of the American Meteorological Society 1994 10;75(10):1825–1830.
- Lin SJ. A finite-volume integration method for computing pressure gradient force in general vertical coordinates. Quarterly Journal of the Royal Meteorological Society 1997;123(542):1749–1762.
- Tomita H, Satoh M. A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dynamics Research 2004;34(6):357.
- Idealized test cases for the dynamical cores of Atmospheric General Circulation Models: A proposal for the NCAR ASP 2008 summer colloquium. Manuscript: May/29/2008, NCAR Technical Report and Journal Paper 2008;https://public.websites.umich.edu/~cjablono/dycore_test_suite.html.
- Ji M. Dynamical Core Evaluation Test Report for NOAA’s Next Generation Global Prediction System (NGGPS); 2016. https://www.weather.gov/media/sti/nggps/NGGPS%20Dycore%20Phase%202%20Test%20Report%20website.pdf.
- https://arxiv.org/abs/2310.01255.
- Energy-conserving finite-difference schemes for quasi-hydrostatic equations. Quarterly Journal of the Royal Meteorological Society 2015;141(693):3056–3075. https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.2590.
- Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere. Geoscientific Model Development 2023;16(19):5601–5626. https://gmd.copernicus.org/articles/16/5601/2023/.
- The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development 2019;12(5):1909–1963. https://gmd.copernicus.org/articles/12/1909/2019/.