Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Building Temperature Forecasting: A Data-driven Approach with System Scenario Clustering (2402.13628v1)

Published 21 Feb 2024 in cs.LG and eess.SP

Abstract: Heat, Ventilation and Air Conditioning (HVAC) systems play a critical role in maintaining a comfortable thermal environment and cost approximately 40% of primary energy usage in the building sector. For smart energy management in buildings, usage patterns and their resulting profiles allow the improvement of control systems with prediction capabilities. However, for large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem. In this paper, a new data-driven room temperature prediction model is proposed based on the k-means clustering method. The proposed data-driven temperature prediction approach extracts the system operation feature through historical data analysis and further simplifies the system-level model to improve generalization and computational efficiency. We evaluate the proposed approach in the real world. The results demonstrated that our approach can significantly reduce modeling time without reducing prediction accuracy.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. UN Environment Programme, “2021 Global Status report for Buildings and Construction. Towards a zero-emissions, efficient and resilient buildings and construction sector.” pp. 1–41, 2021.
  2. X. Kou, Y. Du, F. Li, H. Pulgar-Painemal, H. Zandi, J. Dong, and M. M. Olama, “Model-based and data-driven HVAC control strategies for residential demand response,” IEEE Open Access Journal of Power and Energy, vol. 8, pp. 186–197, 2021.
  3. W. Li, G. Gong, H. Fan, P. Peng, L. Chun, and X. Fang, “A clustering-based approach for “cross-scale” load prediction on building level in HVAC systems,” Applied Energy, vol. 282, no. PB, p. 116223, 2021.
  4. Y. Du, F. Li, J. Munk, K. Kurte, O. Kotevska, K. Amasyali, and H. Zandi, “Multi-task deep reinforcement learning for intelligent multi-zone residential HVAC control,” Electric Power Systems Research, vol. 192, no. November, p. 106959, 2021.
  5. A. Parisio, D. Varagnolo, M. Molinari, G. Pattarello, L. Fabietti, and K. H. Johansson, “Implementation of a Scenario-based MPC for HVAC Systems: an Experimental Case Study,” IFAC Proc. Vol., vol. 47, no. 3, pp. 599–605, 2014.
  6. M. J. Bursill, L. O’Brien, and I. Beausoleil-Morrison, “Multi-zone field study of rule extraction control to simplify implementation of predictive control to reduce building energy use,” Energy and Buildings, vol. 222, p. 110056, 2020.
  7. E. T. Maddalena, S. A. Müller, R. M. dos Santos, C. Salzmann, and C. N. Jones, “Experimental data-driven model predictive control of a hospital HVAC system during regular use,” Energy and Buildings, vol. 271, p. 112316, 2022.
  8. F. Elmaz, R. Eyckerman, W. Casteels, S. Latré, and P. Hellinckx, “Cnn-lstm architecture for predictive indoor temperature modeling,” Building and Environment, vol. 206, p. 108327, 2021.
  9. B. Jiang, H. Gong, H. Qin, and M. Zhu, “Attention-lstm architecture combined with bayesian hyperparameter optimization for indoor temperature prediction,” Building and Environment, vol. 224, p. 109536, 2022.
  10. D. Zhao, D. Watari, Y. Ozawa, I. Taniguchi, T. Suzuki, Y. Shimoda, and T. Onoye, “Data-driven online energy management framework for HVAC systems: An experimental study,” Appl. Energy, vol. 352, no. September, p. 121921, dec 2023.
  11. I. Shaer and A. Shami, “Hierarchical modelling for co2 variation prediction for hvac system operation,” Algorithms, vol. 16, no. 5, 2023.
  12. Z. Fang, N. Crimier, L. Scanu, A. Midelet, A. Alyafi, and B. Delinchant, “Multi-zone indoor temperature prediction with lstm-based sequence to sequence model,” Energy and Buildings, vol. 245, p. 111053, 2021.
  13. M. N. Rao, “System Scenario Based Resource Management of Processing Elements on MPSoC,” Ph.D. dissertation, Katholieke Universiteit Leuven, 2012.
  14. D. Tiano, A. Bonifati, and R. Ng, “Featts: Feature-based time series clustering,” in Proceedings of the 2021 International Conference on Management of Data, ser. SIGMOD ’21.   New York, NY, USA: Association for Computing Machinery, 2021, p. 2784–2788.
  15. M. Cranmer, A. Sanchez-Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, and S. Ho, “Discovering symbolic models from deep learning with inductive biases,” in Proceedings of the 34th International Conference on Neural Information Processing Systems, ser. NIPS’20.   Red Hook, NY, USA: Curran Associates Inc., 2020, p. 17429–17442.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Dafang Zhao (11 papers)
  2. Zheng Chen (221 papers)
  3. Zhengmao Li (4 papers)
  4. Xiaolei Yuan (4 papers)
  5. Ittetsu Taniguchi (5 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets