Avoiding barren plateaus via Gaussian Mixture Model (2402.13501v1)
Abstract: Variational quantum algorithms is one of the most representative algorithms in quantum computing, which has a wide range of applications in quantum machine learning, quantum simulation and other related fields. However, they face challenges associated with the barren plateau phenomenon, especially when dealing with large numbers of qubits, deep circuit layers, or global cost functions, making them often untrainable. In this paper, we propose a novel parameter initialization strategy based on Gaussian Mixture Models. We rigorously prove that, the proposed initialization method consistently avoids the barren plateaus problem for hardware-efficient ansatz with arbitrary length and qubits and any given cost function. Specifically, we find that the gradient norm lower bound provided by the proposed method is independent of the number of qubits $N$ and increases with the circuit depth $L$. Our results strictly highlight the significance of Gaussian Mixture model initialization strategies in determining the trainability of quantum circuits, which provides valuable guidance for future theoretical investigations and practical applications.
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- M. Schuld and N. Killoran, Quantum machine learning in feature hilbert spaces, Phys. Rev. Lett. 122, 040504 (2019).
- J. A. Nelder and R. Mead, A simplex method for function minimization, Computer Journal 7, 308 (1965).
- M. J. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, The computer journal 7, 155 (1964).
- C. Ortiz Marrero, M. Kieferová, and N. Wiebe, Entanglement-induced barren plateaus, PRX Quantum 2, 040316 (2021).
- L. Friedrich and J. Maziero, Avoiding barren plateaus with classical deep neural networks, Phys. Rev. A 106, 042433 (2022).
- C. Zhao and X.-S. Gao, Analyzing the barren plateau phenomenon in training quantum neural networks with the ZX-calculus, Quantum 5, 466 (2021).
- I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional neural networks, Nature Physics 15, 1273 (2019).
- A. G. Taube and R. J. Bartlett, New perspectives on unitary coupled-cluster theory, International Journal of Quantum Chemistry 106, 3393 (2006), https://onlinelibrary.wiley.com/doi/pdf/10.1002/qua.21198 .
- D. Wecker, M. B. Hastings, and M. Troyer, Progress towards practical quantum variational algorithms, Phys. Rev. A 92, 042303 (2015).
- D. Reynolds, Gaussian mixture models, in Encyclopedia of Biometrics, edited by S. Z. Li and A. K. Jain (Springer US, Boston, MA, 2015) pp. 827–832.
- C. Rasmussen, The infinite gaussian mixture model, in Advances in Neural Information Processing Systems, Vol. 12, edited by S. Solla, T. Leen, and K. Müller (MIT Press, 1999).
- G. Xuan, W. Zhang, and P. Chai, Em algorithms of gaussian mixture model and hidden markov model, in Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), Vol. 1 (2001) pp. 145–148 vol.1.
- M.-S. Yang, C.-Y. Lai, and C.-Y. Lin, A robust em clustering algorithm for gaussian mixture models, Pattern Recognition 45, 3950 (2012).
- M. Glodek, M. Schels, and F. Schwenker, Ensemble gaussian mixture models for probability density estimation, Computational Statistics 28, 127 (2013).
- K. Bharti and T. Haug, Iterative quantum-assisted eigensolver, Phys. Rev. A 104, L050401 (2021).
- J. Romero, J. P. Olson, and A. Aspuru-Guzik, Quantum autoencoders for efficient compression of quantum data, Quantum Science and Technology 2, 045001 (2017).
- I. S. Maria Schuld and F. Petruccione, An introduction to quantum machine learning, Contemporary Physics 56, 172 (2015), https://doi.org/10.1080/00107514.2014.964942 .
- R. B. Stinchcombe, Ising model in a transverse field. i. basic theory, Journal of Physics C: Solid State Physics 6, 2459 (1973).
- M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical quantum phase transitions in the transverse-field ising model, Phys. Rev. Lett. 110, 135704 (2013).
- X. Shi, Github repository, https://github.com/iwrache/GMM-BP.
- L. Bittel and M. Kliesch, Training variational quantum algorithms is np-hard, Phys. Rev. Lett. 127, 120502 (2021).
- E. R. Anschuetz and B. T. Kiani, Quantum variational algorithms are swamped with traps, Nature Communications 13, 7760 (2022).