Local unitary equivalence of arbitrary-dimensional multipartite quantum states (2402.13489v1)
Abstract: Local unitary equivalence is an important ingredient for quantifying and classifying entanglement. Verifying whether or not two quantum states are local unitary equivalent is a crucial problem, where only the case of multipartite pure states is solved. For mixed states, however, the verification of local unitary equivalence is still a challenging problem. In this paper, based on the coefficient matrices of generalized Bloch representations of quantum states, we find a variety of local unitary invariants for arbitrary-dimensional bipartite quantum states. These invariants are operational and can be used as necessary conditions for verifying the local unitary equivalence of two quantum states. Furthermore, we extend the construction to the arbitrary-dimensional multipartite case. We finally apply these invariants to estimate concurrence, a vital entanglement measure, showing the practicability of local unitary invariants in characterizing entanglement.
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
- A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
- W. Dür, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62, 062314 (2000).
- K. Chen, S. Albeverio, and S.-M. Fei, Concurrence of Arbitrary Dimensional Bipartite Quantum States, Phys. Rev. Lett. 95, 040504 (2005a).
- K. Chen, S. Albeverio, and S.-M. Fei, Entanglement of Formation of Bipartite Quantum States, Phys. Rev. Lett. 95, 210501 (2005b).
- K. Chen and L.-A. Wu, The generalized partial transposition criterion for separability of multipartite quantum states, Phys. Lett. A 306, 14 (2002).
- K. Chen and L.-A. Wu, A Matrix Realignment Method for Recognizing Entanglement, Quantum Info. Comput. 3, 193–202 (2003).
- O. Rudolph, Some properties of the computable cross-norm criterion for separability, Phys. Rev. A 67, 032312 (2003).
- S. Albeverio, K. Chen, and S.-M. Fei, Generalized reduction criterion for separability of quantum states, Phys. Rev. A 68, 062313 (2003a).
- S. Albeverio, S.-M. Fei, and D. Goswami, Local invariants for a class of mixed states, Phys. Lett. A 340, 37 (2005c).
- S. Albeverio, S.-M. Fei, and D. Goswami, Local equivalence of rank-2 quantum mixed states, J. Phys. A: Math. Theor. 40, 11113 (2007).
- A. M. Martins, Necessary and sufficient conditions for local unitary equivalence of multiqubit states, Phys. Rev. A 91, 042308 (2015).
- N. Linden, S. Popescu, and A. Sudbery, Nonlocal parameters for multiparticle density matrices, Phys. Rev. Lett. 83, 243 (1999a).
- B.-Z. Sun, S.-M. Fei, and Z.-X. Wang, On Local Unitary Equivalence of Two and Three-qubit States, Sci. Rep. 7, 4869 (2017).
- J.-L. Li and C.-F. Qiao, Classification of arbitrary multipartite entangled states under local unitary equivalence, J. Phys. Math. Theor. 46, 075301 (2013).
- M. Grassl, M. Rötteler, and T. Beth, Computing local invariants of quantum-bit systems, Phys. Rev. A 58, 1833 (1998).
- E. Rains, Polynomial invariants of quantum codes, IEEE Trans. Inf. Theory 46, 54 (2000).
- B. Kraus, Local unitary equivalence and entanglement of multipartite pure states, Phys. Rev. A 82, 032121 (2010a).
- B. Kraus, Local unitary equivalence of multipartite pure states, Phys. Rev. Lett. 104, 020504 (2010b).
- Y. Makhlin, Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations, Quantum Inf. Process. 1, 243 (2002).
- F. Mintert, M. Kuś, and A. Buchleitner, Concurrence of Mixed Multipartite Quantum States, Phys. Rev. Lett. 95, 260502 (2005).
- F. Mintert, M. Kuś, and A. Buchleitner, Concurrence of Mixed Bipartite Quantum States in Arbitrary Dimensions, Phys. Rev. Lett. 92, 167902 (2004).
- A. Uhlmann, Fidelity and concurrence of conjugated states, Phys. Rev. A 62, 032307 (2000).
- W. K. Wootters, Entanglement of Formation of an Arbitrary State of Two Qubits, Phys. Rev. Lett. 80, 2245 (1998).
- Piotr Badziag and Piotr Deuar and Michał Horodecki and Paweł Horodecki and Ryszard Horodecki , Concurrence in arbitrary dimensions, J. Mod. Opt. 49, 1289 (2002).
- C. Eltschka and J. Siewert, Maximum N𝑁Nitalic_N-body correlations do not in general imply genuine multipartite entanglement, Quantum 4, 229 (2020).
- P. Appel, M. Huber, and C. Klöckl, Monogamy of correlations and entropy inequalities in the Bloch picture, J. Phys. Commun. 4, 025009 (2020).
- G. Kimura, The Bloch vector for N-level systems, Phys. Lett. A 314, 339 (2003).
- R. A. Horn, R. A. Horn, and C. R. Johnson, Matrix analysis (Cambridge university press, 1990).