Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Full-shape analysis with simulation-based priors: constraints on single field inflation from BOSS (2402.13310v2)

Published 20 Feb 2024 in astro-ph.CO, hep-ph, and hep-th

Abstract: Perturbative, or effective field theory (EFT)-based, full-shape analyses of galaxy clustering data involve ``nuisance parameters'' to capture various observational effects such as the galaxy-dark matter connection (galaxy bias). We present an efficient approach to set informative physically motivated priors on these parameters. We extract these priors from simulated galaxy catalogs based on halo occupation distribution (HOD) models. First, we build a joint distribution between EFT galaxy bias and HOD parameters from a set of 10,500 HOD mock catalogs. We use the field level EFT technique that allows for cosmic variance cancellation, enabling a precision calibration of EFT parameters from computationally inexpensive small-volume simulations. Second, we use neural density estimators -- normalizing flows -- to model the marginal probability density of the EFT parameters, which can be used as a prior distribution in full shape analyses. As a first application, we use our HOD-based priors in a new analysis of galaxy power spectra and bispectra from the BOSS survey in the context of single field primordial non-Gaussianity. We find that our priors lead to a reduction of the posterior volume of bias parameters by an order of magnitude. We also find $f_{\rm NL}{\rm equil} = 320\pm 300$ and $f_{\rm NL}{\rm ortho} = 100\pm 130$ (at 68\% CL) in a combined two-template analysis, representing a $\approx 40\%$ improvement in constraints on single field primordial non-Gaussianity, equivalent to doubling the survey volume.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. A. Aghamousa et al. (DESI),   (2016), arXiv:1611.00036 [astro-ph.IM] .
  2. R. Laureijs et al. (EUCLID),   (2011), arXiv:1110.3193 [astro-ph.CO] .
  3. v. Ivezić et al. (LSST), Astrophys. J. 873, 111 (2019), arXiv:0805.2366 [astro-ph] .
  4. R. Akeson et al.,   (2019), arXiv:1902.05569 [astro-ph.IM] .
  5. M. M. Ivanov,   (2022), arXiv:2212.08488 [astro-ph.CO] .
  6. M. M. Ivanov,   (2021), arXiv:2106.12580 [astro-ph.CO] .
  7. O. H. E. Philcox and M. M. Ivanov, Phys. Rev. D 105, 043517 (2022), arXiv:2112.04515 [astro-ph.CO] .
  8. S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 2617 (2017a), arXiv:1607.03155 [astro-ph.CO] .
  9. F. Beutler et al. (BOSS), Mon. Not. Roy. Astron. Soc. 466, 2242 (2017), arXiv:1607.03150 [astro-ph.CO] .
  10. M. M. Abidi and T. Baldauf, JCAP 1807, 029 (2018), arXiv:1802.07622 [astro-ph.CO] .
  11. A. A. Berlind and D. H. Weinberg, Astrophys. J. 575, 587 (2002), arXiv:astro-ph/0109001 .
  12. R. H. Wechsler and J. L. Tinker, Ann. Rev. Astron. Astrophys. 56, 435 (2018), arXiv:1804.03097 [astro-ph.GA] .
  13. E. Paillas et al.,   (2023), arXiv:2309.16541 [astro-ph.CO] .
  14. C. Cuesta-Lazaro et al.,   (2023), arXiv:2309.16539 [astro-ph.CO] .
  15. C. Hahn et al.,   (2023), arXiv:2310.15246 [astro-ph.CO] .
  16. L. Senatore, Phys. Rev. D 71, 043512 (2005), arXiv:astro-ph/0406187 .
  17. E. Castorina et al., JCAP 09, 010 (2019), arXiv:1904.08859 [astro-ph.CO] .
  18. A. Barreira, JCAP 11, 013 (2022), arXiv:2205.05673 [astro-ph.CO] .
  19. A. Barreira and E. Krause, JCAP 10, 044 (2023), arXiv:2302.09066 [astro-ph.CO] .
  20. T. Lazeyras and F. Schmidt, JCAP 1809, 008 (2018), arXiv:1712.07531 [astro-ph.CO] .
  21. G. Cabass and F. Schmidt, JCAP 04, 042 (2020), arXiv:1909.04022 [astro-ph.CO] .
  22. N. Aghanim et al. (Planck),   (2018), arXiv:1807.06209 [astro-ph.CO] .
  23. Y. B. Zeldovich, Astron. Astrophys. 5, 84 (1970).
  24. L. Senatore and M. Zaldarriaga, JCAP 1502, 013 (2015), arXiv:1404.5954 [astro-ph.CO] .
  25. M. M. Ivanov and S. Sibiryakov, JCAP 1807, 053 (2018), arXiv:1804.05080 [astro-ph.CO] .
  26. D. Rezende and S. Mohamed, in International conference on machine learning (PMLR, 2015) pp. 1530–1538.
  27. A. Cooray and R. K. Sheth, Phys. Rept. 372, 1 (2002), arXiv:astro-ph/0206508 .
  28. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A9 (2020), arXiv:1905.05697 [astro-ph.CO] .
  29. S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 2617 (2017b), arXiv:1607.03155 [astro-ph.CO] .
  30. F.-S. Kitaura et al., Mon. Not. Roy. Astron. Soc. 456, 4156 (2016), arXiv:1509.06400 [astro-ph.CO] .
  31. S. A. Rodríguez-Torres et al., Mon. Not. Roy. Astron. Soc. 460, 1173 (2016), arXiv:1509.06404 [astro-ph.CO] .
  32. M. M. Ivanov, Phys. Rev. D 109, 023507 (2024), arXiv:2309.10133 [astro-ph.CO] .
  33. O. H. E. Philcox, Phys. Rev. D 103, 103504 (2021a), arXiv:2012.09389 [astro-ph.CO] .
  34. O. H. E. Philcox,   (2021b), arXiv:2107.06287 [astro-ph.CO] .
  35. M. Ata et al., Mon. Not. Roy. Astron. Soc. 473, 4773 (2018), arXiv:1705.06373 [astro-ph.CO] .
  36. J. Hou et al., Mon. Not. Roy. Astron. Soc. 500, 1201 (2020), arXiv:2007.08998 [astro-ph.CO] .
  37. R. Neveux et al., Mon. Not. Roy. Astron. Soc. 499, 210 (2020), arXiv:2007.08999 [astro-ph.CO] .
  38. A. Chudaykin and M. M. Ivanov,   (2022), arXiv:2210.17044 [astro-ph.CO] .
  39. A. de Mattia et al., Mon. Not. Roy. Astron. Soc. 501, 5616 (2021), arXiv:2007.09008 [astro-ph.CO] .
  40. C. Modi and O. H. E. Philcox,   (2023), arXiv:2309.10270 [astro-ph.CO] .
  41. T. Brinckmann and J. Lesgourgues, Phys. Dark Univ. 24, 100260 (2019), arXiv:1804.07261 [astro-ph.CO] .
  42. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980  (2014).
Citations (5)

Summary

We haven't generated a summary for this paper yet.