Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalizing measurement-induced phase transitions to information exchange symmetry breaking (2402.13271v3)

Published 16 Feb 2024 in quant-ph, cond-mat.dis-nn, cond-mat.stat-mech, and hep-th

Abstract: In this work we investigate the conditions for quantum back action to result in a phase transition in the information dynamics of a monitored system. We introduce a framework that captures a wide range of experiments encompassing probes comprised of projective measurements and probes which more generally transfer quantum information from the system to a quantum computer. Our framework explicitly uses a model of unitary evolution which couples system, apparatus and environment. Information dynamics is investigated using the R\'enyi and von-Neumann entropies of the evolving state, and we construct a replica theory for them. We identify the possible replica symmetries an experiment can possess and discuss their spontaneous symmetry breaking. In particular, we identify a minimum subgroup whose spontaneous symmetry breaking results in an entanglement transition. This symmetry is only possible when the information in the apparatus is as informative about the dynamics of the system as the information transferred to the environment. We call this requirement the information exchange symmetry and quantify it by a relationship between the entropies. We then show how the entanglement transition can be understood as the spontaneously breaking of the information exchange symmetry and without referring to the replica theory. Information exchange symmetry breaking is then shown to generalize the phenomenology of the measurement-induced phase transition (MIPT). We apply this theory to the brickwork quantum-enhanced experiment introduced in an accompanying Letter [Phys. Rev. A 111, L010402 (2025) ] in the case where the unitaries are chosen from the Haar measure, and identify a distinct universality from the MIPT. This notion of information exchange symmetry breaking generalizes the MIPT, and provides a framework for understanding the dynamics of quantum information in quantum-enhanced experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. S. P. Kelly and J. Marino, Information exchange symmetry breaking in quantum-enhanced experiments (2023), arXiv:2310.03061 [quant-ph] .
  2. Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 10.1103/physrevb.98.205136 (2018).
  3. B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
  4. Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100, 134306 (2019).
  5. M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10, 041020 (2020a).
  6. Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020).
  7. M. J. Gullans and D. A. Huse, Scalable probes of measurement-induced criticality, Phys. Rev. Lett. 125, 070606 (2020b).
  8. Y. Li and M. P. A. Fisher, Statistical mechanics of quantum error correcting codes, Phys. Rev. B 103, 104306 (2021a).
  9. M. Ippoliti and V. Khemani, Postselection-Free Entanglement Dynamics via Spacetime Duality, Phys. Rev. Lett. 126, 060501 (2021).
  10. S. J. Garratt and E. Altman, Probing post-measurement entanglement without post-selection (2023), arXiv:2305.20092 [quant-ph] .
  11. M. Buchhold, T. Müller, and S. Diehl, Revealing measurement-induced phase transitions by pre-selection (2022), arXiv:2208.10506 [cond-mat.dis-nn] .
  12. D. Qian and J. Wang, Steering-induced phase transition in measurement-only quantum circuits, Phys. Rev. B 109, 024301 (2024).
  13. A. J. Friedman, O. Hart, and R. Nandkishore, Measurement-induced phases of matter require feedback, PRX Quantum 4, 10.1103/prxquantum.4.040309 (2023).
  14. Y. Bao, M. Block, and E. Altman, Finite-time teleportation phase transition in random quantum circuits, Phys. Rev. Lett. 132, 030401 (2024).
  15. T.-C. Lu and T. Grover, Spacetime duality between localization transitions and measurement-induced transitions, PRX Quantum 2, 040319 (2021).
  16. H.-Y. Huang, R. Kueng, and J. Preskill, Information-theoretic bounds on quantum advantage in machine learning, Phys. Rev. Lett. 126, 190505 (2021).
  17. D. Aharonov, J. Cotler, and X.-L. Qi, Quantum algorithmic measurement, Nature communications 13, 887 (2022).
  18. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge university press, 2010).
  19. M. Jiang, S. Luo, and S. Fu, Channel-state duality, Phys. Rev. A 87, 022310 (2013).
  20. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, Journal of High Energy Physics 2007, 120 (2007).
  21. B. Yoshida and A. Kitaev, Efficient decoding for the hayden-preskill protocol (2017), arXiv:1710.03363 [hep-th] .
  22. P. Sierant and X. Turkeshi, Universal behavior beyond multifractality of wave functions at measurement-induced phase transitions, Phys. Rev. Lett. 128, 130605 (2022).
  23. A. Nahum and K. J. Wiese, Renormalization group for measurement and entanglement phase transitions, Physical Review B  (2023).
  24. X. Feng, B. Skinner, and A. Nahum, Measurement-induced phase transitions on dynamical quantum trees, PRX Quantum 4, 030333 (2023).
  25. Y. Li and M. P. A. Fisher, Robust decoding in monitored dynamics of open quantum systems with z2subscript𝑧2z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry (2021b), arXiv:2108.04274 .
  26. Z. Weinstein, Y. Bao, and E. Altman, Measurement-induced power-law negativity in an open monitored quantum circuit, Phys. Rev. Lett. 129, 080501 (2022).
  27. S. Murciano, P. Calabrese, and L. Piroli, Symmetry-resolved page curves, Phys. Rev. D 106, 046015 (2022).
  28. M. Ippoliti and V. Khemani, Learnability transitions in monitored quantum dynamics via eavesdropper’s classical shadows (2023), arXiv:2307.15011 [quant-ph] .
  29. M. McGinley, Postselection-free learning of measurement-induced quantum dynamics (2023), arXiv:2310.04156 [quant-ph] .
  30. M. Bejan, C. McLauchlan, and B. Béri, Dynamical magic transitions in monitored clifford+t circuits (2023), arXiv:2312.00132 [quant-ph] .
  31. S. Vijay, Measurement-driven phase transition within a volume-law entangled phase (2020), arxiv:2005.03052 .
  32. S. Sang and T. H. Hsieh, Measurement-protected quantum phases, Phys. Rev. Research 3, 023200 (2021).
  33. Y. Bao, S. Choi, and E. Altman, Symmetry enriched phases of quantum circuits, Annals of Physics 435, 168618 (2021).
  34. A. Lavasani, Y. Alavirad, and M. Barkeshli, Measurement-induced topological entanglement transitions in symmetric random quantum circuits, Nature Physics 17, 342 (2021a).
  35. A. Lavasani, Y. Alavirad, and M. Barkeshli, Topological order and criticality in (2+1)⁢D21D(2+1)\mathrm{D}( 2 + 1 ) roman_D monitored random quantum circuits, Phys. Rev. Lett. 127, 235701 (2021b).
  36. I. Poboiko, I. V. Gornyi, and A. D. Mirlin, Measurement-induced phase transition for free fermions above one dimension (2023b), arXiv:2309.12405 [quant-ph] .
  37. O. Alberton, M. Buchhold, and S. Diehl, Entanglement transition in a monitored free-fermion chain: From extended criticality to area law, Phys. Rev. Lett. 126, 170602 (2021).
  38. T. Müller, S. Diehl, and M. Buchhold, Measurement-induced dark state phase transitions in long-ranged fermion systems, Phys. Rev. Lett. 128, 010605 (2022).
  39. G. Piccitto, A. Russomanno, and D. Rossini, Entanglement transitions in the quantum ising chain: A comparison between different unravelings of the same lindbladian, Phys. Rev. B 105, 064305 (2022).
  40. X. Turkeshi, L. Piroli, and M. Schiró, Enhanced entanglement negativity in boundary-driven monitored fermionic chains, Phys. Rev. B 106, 024304 (2022a).
  41. M. Szyniszewski, O. Lunt, and A. Pal, Disordered monitored free fermions, Phys. Rev. B 108, 165126 (2023).
  42. A. Russomanno, G. Piccitto, and D. Rossini, Entanglement transitions and quantum bifurcations under continuous long-range monitoring, Phys. Rev. B 108, 104313 (2023).
  43. X. Turkeshi, R. Fazio, and M. Dalmonte, Measurement-induced criticality in (2+1)21(2+1)( 2 + 1 )-dimensional hybrid quantum circuits, Phys. Rev. B 102, 014315 (2020).
  44. O. Lunt, M. Szyniszewski, and A. Pal, Measurement-induced criticality and entanglement clusters: A study of one-dimensional and two-dimensional clifford circuits, Phys. Rev. B 104, 155111 (2021).
  45. T. Jin and D. G. Martin, Kardar-parisi-zhang physics and phase transition in a classical single random walker under continuous measurement, Phys. Rev. Lett. 129, 260603 (2022).
  46. A. Lyons, S. Choi, and E. Altman, Universal crossover in quantum circuits governed by a proximate classical error correction transition, Phys. Rev. B 107, 174304 (2023).
  47. Y. Fuji and Y. Ashida, Measurement-induced quantum criticality under continuous monitoring, Phys. Rev. B 102, 054302 (2020).
  48. G. Martín-Vázquez, T. Tolppanen, and M. Silveri, Phase transitions induced by standard and predetermined measurements in transmon arrays (2023), arXiv:2302.02934 [quant-ph] .
  49. P. Zhang and Z. Yu, Dynamical transition of operator size growth in quantum systems embedded in an environment, Phys. Rev. Lett. 130, 250401 (2023).
  50. G. Chiribella, G. M. D’Ariano, and P. Perinotti, Quantum circuit architecture, Phys. Rev. Lett. 101, 060401 (2008).
  51. D. Gribben, J. Marino, and S. P. Kelly, Markovian to non-markovian phase transition in the operator dynamics of a mobile impurity (2024), arXiv:2401.17066 [quant-ph] .
  52. W. F. Stinespring, Positive functions on c*-algebras, Proceedings of the American Mathematical Society 6, 211 (1955).
  53. T. Castellani and A. Cavagna, Spin-glass theory for pedestrians, Journal of Statistical Mechanics: Theory and Experiment 2005, P05012 (2005).
  54. F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008).
  55. M. Horodecki, J. Oppenheim, and A. Winter, Partial quantum information, Nature 436, 673 (2005).
  56. M. Horodecki, J. Oppenheim, and A. Winter, Quantum State Merging and Negative Information, Commun. Math. Phys. 269, 107 (2007).
  57. S. Lloyd, Capacity of the noisy quantum channel, Physical Review A 55, 1613 (1997).
  58. F. Leditzky, Relative entropies and their use in quantum information theory (2016), arXiv:1611.08802 [quant-ph] .
  59. F. Leditzky, C. Rouzé, and N. Datta, Data processing for the sandwiched rényi divergence: a condition for equality, Letters in Mathematical Physics 107, 61 (2016).
  60. G. Grimmett, The random-cluster model (2003), arXiv:math/0205237 [math.PR] .
  61. R. G. Edwards and A. D. Sokal, Generalization of the fortuin-kasteleyn-swendsen-wang representation and monte carlo algorithm, Phys. Rev. D 38, 2009 (1988).
  62. P. W. Claeys and A. Lamacraft, Maximum velocity quantum circuits, Physical Review Research 2, 10.1103/physrevresearch.2.033032 (2020).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com