Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design and Flight Demonstration of a Quadrotor for Urban Mapping and Target Tracking Research (2402.13195v2)

Published 20 Feb 2024 in cs.RO, cs.CV, cs.SY, and eess.SY

Abstract: This paper describes the hardware design and flight demonstration of a small quadrotor with imaging sensors for urban mapping, hazard avoidance, and target tracking research. The vehicle is equipped with five cameras, including two pairs of fisheye stereo cameras that enable a nearly omnidirectional view and a two-axis gimbaled camera. An onboard NVIDIA Jetson Orin Nano computer running the Robot Operating System software is used for data collection. An autonomous tracking behavior was implemented to coordinate the motion of the quadrotor and gimbaled camera to track a moving GPS coordinate. The data collection system was demonstrated through a flight test that tracked a moving GPS-tagged vehicle through a series of roads and parking lots. A map of the environment was reconstructed from the collected images using the Direct Sparse Odometry (DSO) algorithm. The performance of the quadrotor was also characterized by acoustic noise, communication range, battery voltage in hover, and maximum speed tests.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. A. Alcántara, J. Capitán, A. Torres-González, R. Cunha, and A. Ollero, “Autonomous execution of cinematographic shots with multiple drones,” IEEE Access, vol. 8, pp. 201 300–201 316, 2020.
  2. D. C. Schedl, I. Kurmi, and O. Bimber, “An autonomous drone for search and rescue in forests using airborne optical sectioning,” Sci. Robot., vol. 6, no. 55, p. eabg1188, 2021.
  3. B. R. Geiger, J. F. Horn, G. L. Sinsley, J. A. Ross, L. N. Long, and A. F. Niessner, “Flight testing a real-time direct collocation path planner,” J. Guid., Control, and Dyn., vol. 31, no. 6, pp. 1575–1586, 2008.
  4. Skydio, “Skydio 2+. Navigates tight spaces nimbly. ,” https://www.skydio.com/skydio-2-plus-enterprise, 2024, accessed: 2024-01-14.
  5. A. D. P. Cloitre, “Omnidirectional obstacle detection using minimal sensing,” Ph.D. dissertation, Massachusetts Institute of Technology, 2019.
  6. W. Gao, K. Wang, W. Ding, F. Gao, T. Qin, and S. Shen, “Autonomous aerial robot using dual-fisheye cameras,” J. Field Robot., vol. 37, no. 4, pp. 497–514, 2020.
  7. J. Kim, Y. Jung, D. Lee, and D. H. Shim, “Landing control on a mobile platform for multi-copters using an omnidirectional image sensor,” J. Intell. & Robotic Syst., vol. 84, pp. 529–541, 2016.
  8. J. Pestana, J. L. Sanchez-Lopez, S. Saripalli, and P. Campoy, “Computer vision based general object following for GPS-denied multirotor unmanned vehicles,” in Proc. 2014 Amer. Control Conf.   IEEE, 2014, pp. 1886–1891.
  9. H. Cheng, L. Lin, Z. Zheng, Y. Guan, and Z. Liu, “An autonomous vision-based target tracking system for rotorcraft unmanned aerial vehicles,” in Proc. 2017 IEEE/RSJ Int. Conf. Intell. Robots and Syst.   IEEE, 2017, pp. 1732–1738.
  10. N. J. Sanket, C. M. Parameshwara, C. D. Singh, A. V. Kuruttukulam, C. Fermüller, D. Scaramuzza, and Y. Aloimonos, “Evdodgenet: Deep dynamic obstacle dodging with event cameras,” in 2020 IEEE Int. Conf. Robot. and Automat.   IEEE, 2020, pp. 10 651–10 657.
  11. D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle avoidance for quadrotors with event cameras,” Sci. Robot., vol. 5, no. 40, p. eaaz9712, 2020.
  12. J. Tordesillas and J. P. How, “Panther: Perception-aware trajectory planner in dynamic environments,” IEEE Access, vol. 10, pp. 22 662–22 677, 2022.
  13. X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu, Y. Cao, C. Xu et al., “Swarm of micro flying robots in the wild,” Sci. Robot., vol. 7, no. 66, p. eabm5954, 2022.
  14. M. Mueller, “ecalc - xcoptercalc - the most reliable multicopter calculator on the web,” https://www.ecalc.ch/xcoptercalc.php, 2024, accessed: 2024-12-01.
  15. 3D Robotics, “Introducing DroneKit-Python,” https://dronekit-python.readthedocs.io/en/latest/about/index.html, 2023, accessed: 2023-08-14.
  16. Astar.ai Inc., “CaliCam® - Calibrated Cameras — ASTAR,” https://astar.ai/pages/calicam, accessed: 2023-11-04.
  17. J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE Trans. Pattern Anal. and Mach. Intell., vol. 40, no. 3, pp. 611–625, 2017.

Summary

We haven't generated a summary for this paper yet.