Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An architecture for two-qubit encoding in neutral ytterbium-171 atoms (2402.13134v2)

Published 20 Feb 2024 in quant-ph and physics.atom-ph

Abstract: We present an architecture for encoding two qubits within the optical "clock" transition and nuclear spin-1/2 degree of freedom of neutral ytterbium-171 atoms. Inspired by recent high-fidelity control of all pairs of states within this four-dimensional ququart space, we present a toolbox for intra-ququart (single atom) one- and two-qubit gates, inter-ququart (two atom) Rydberg-based two- and four-qubit gates, and quantum nondemolition (QND) readout. We then use this toolbox to demonstrate the advantages of the ququart encoding for entanglement distillation and quantum error correction which exhibit superior hardware efficiency and better performance in some cases since fewer two-atom (Rydberg-based) operations are required. Finally, leveraging single-state QND readout in our ququart encoding, we present a unique approach to studying interactive circuits as well as to realizing a symmetry protected topological phase of a spin-1 chain with a shallow, constant-depth circuit. These applications are all within reach of recent experiments with neutral ytterbium-171 atom arrays or with several trapped ion species.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. X.-F. Shi, Hyperentanglement of divalent neutral atoms by Rydberg blockade, Phys. Rev. A 104, 042422 (2021).
  2. P. J. Low, B. White, and C. Senko, Control and readout of a 13-level trapped ion qudit, arXiv preprint arXiv:2306.03340  (2023).
  3. V. V. Albert, J. P. Covey, and J. Preskill, Robust Encoding of a Qubit in a Molecule, Phys. Rev. X 10, 031050 (2020).
  4. M. Endo and T. R. Schibli, Residual phase noise suppression for Pound-Drever-Hall cavity stabilization with an electro-optic modulator, OSA Contin. 1, 116 (2018).
  5. J. Ye, H. J. Kimble, and H. Katori, Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps, Science (80-. ). 320, 1734 (2008).
  6. M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).
  7. S. Jandura and G. Pupillo, Time-optimal two-and three-qubit gates for rydberg atoms, Quantum 6, 712 (2022).
  8. P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52, R2493 (1995).
  9. D. Gottesman, Stabilizer codes and quantum error correction (California Institute of Technology, 1997).
  10. J. Preskill, Reliable quantum computers, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 385 (1998).
  11. B. M. Terhal, Quantum error correction for quantum memories, Reviews of Modern Physics 87, 307 (2015).
  12. D. Gottesman, Theory of fault-tolerant quantum computation, Phys. Rev. A 57, 127 (1998).
  13. D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation (2009), arXiv:0904.2557 [quant-ph] .
  14. P. W. Shor, Fault-tolerant quantum computation, in Proceedings of 37th conference on foundations of computer science (IEEE, 1996) pp. 56–65.
  15. E. Knill, Quantum computing with realistically noisy devices, Nature 434, 39 (2005).
  16. R. Chao and B. W. Reichardt, Quantum error correction with only two extra qubits, Physical review letters 121, 050502 (2018).
  17. C. Chamberland and M. E. Beverland, Flag fault-tolerant error correction with arbitrary distance codes, Quantum 2, 53 (2018).
  18. R. Chao and B. W. Reichardt, Flag fault-tolerant error correction for any stabilizer code, PRX Quantum 1, 010302 (2020).
  19. L. Vaidman, L. Goldenberg, and S. Wiesner, Error prevention scheme with four particles, Physical Review A 54, R1745 (1996).
  20. T. Kennedy and H. Tasaki, Hidden z2×z2subscript𝑧2subscript𝑧2z_{2}\times z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry breaking in haldane-gap antiferromagnets, Phys. Rev. B 45, 304 (1992).
  21. M. den Nijs and K. Rommelse, Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains, Phys. Rev. B 40, 4709 (1989).
  22. F. Verstraete and J. I. Cirac, Valence-bond states for quantum computation, Phys. Rev. A 70, 060302 (2004).
  23. D. Gross and J. Eisert, Novel schemes for measurement-based quantum computation, Phys. Rev. Lett. 98, 220503 (2007).
  24. G. K. Brennen and A. Miyake, Measurement-based quantum computer in the gapped ground state of a two-body hamiltonian, Phys. Rev. Lett. 101, 010502 (2008).
  25. T.-C. Wei, I. Affleck, and R. Raussendorf, Affleck-kennedy-lieb-tasaki state on a honeycomb lattice is a universal quantum computational resource, Phys. Rev. Lett. 106, 070501 (2011).
  26. Y. Huang and X. Chen, Quantum circuit complexity of one-dimensional topological phases, Phys. Rev. B 91, 195143 (2015).
  27. L. Zhou, S. Choi, and M. D. Lukin, Symmetry-protected dissipative preparation of matrix product states, Phys. Rev. A 104, 032418 (2021).
  28. Z.-Y. Wei, D. Malz, and J. I. Cirac, Efficient adiabatic preparation of tensor network states, Phys. Rev. Res. 5, L022037 (2023).
  29. B. Murta, P. M. Q. Cruz, and J. Fernández-Rossier, Preparing valence-bond-solid states on noisy intermediate-scale quantum computers, Phys. Rev. Res. 5, 013190 (2023).
  30. D. P. Arovas and A. Auerbach, Functional integral theories of low-dimensional quantum heisenberg models, Phys. Rev. B 38, 316 (1988).
  31. J. K. Jain, Incompressible quantum hall states, Phys. Rev. B 40, 8079 (1989).
  32. N. Read and S. Sachdev, Large-n expansion for frustrated quantum antiferromagnets, Phys. Rev. Lett. 66, 1773 (1991).
  33. X.-G. Wen, Quantum orders and symmetric spin liquids, Phys. Rev. B 65, 165113 (2002a).
  34. X.-G. Wen, Quantum order: a quantum entanglement of many particles, Physics Letters A 300, 175 (2002b).
  35. B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
  36. Y. Li, X. Chen, and M. P. A. Fisher, Quantum zeno effect and the many-body entanglement transition, Phys. Rev. B 98, 205136 (2018).
  37. P. Sierant and X. Turkeshi, Controlling entanglement at absorbing state phase transitions in random circuits, Phys. Rev. Lett. 130, 120402 (2023).
  38. H. K. Cummins, G. Llewellyn, and J. A. Jones, Tackling systematic errors in quantum logic gates with composite rotations, Phys. Rev. A 67, 042308 (2003).
  39. C. VAILLANT and J. LOUIS, Long-range interactions in one-and two-electron rydberg atoms, Ph.D. thesis, Durham University (2014).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com