Faster, Deterministic and Space Efficient Subtrajectory Clustering (2402.13117v3)
Abstract: Given a trajectory $T$ and a distance $\Delta$, we wish to find a set $C$ of curves of complexity at most $\ell$, such that we can cover $T$ with subcurves that each are within Fr\'echet distance $\Delta$ to at least one curve in $C$. We call $C$ an $(\ell,\Delta)$-clustering and aim to find an $(\ell,\Delta)$-clustering of minimum cardinality. This problem variant was introduced by Akitaya $et$ $al.$ (2021) and shown to be NP-complete. The main focus has therefore been on bicriterial approximation algorithms, allowing for the clustering to be an $(\ell, \Theta(\Delta))$-clustering of roughly optimal size. We present algorithms that construct $(\ell,4\Delta)$-clusterings of $\mathcal{O}(k \log n)$ size, where $k$ is the size of the optimal $(\ell, \Delta)$-clustering. We use $\mathcal{O}(n \log2 n + n \cdot (k + \ell) \log n)$ space and $\mathcal{O}(k n3 \log4 n)$ time. Our algorithms significantly improve upon the clustering quality (improving the approximation factor in $\Delta$) and size (whenever $\ell \in \Omega(\log n)$). We offer deterministic running times comparable to known expected bounds. Additionally, we give a near-quadratic improvement upon the dependency on $n$ in the space usage.
- Subtrajectory clustering: Models and algorithms. In proc. 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pages 75–87, 2018. doi:10.1145/3196959.3196972.
- Near-linear time approximation algorithms for curve simplification. Algorithmica, 42(3):203–219, 2005. doi:10.1007/s00453-005-1165-y.
- Subtrajectory clustering: Finding set covers for set systems of subcurves. Computing in Geometry and Topology, 2(1):1:1–1:48, 2023. doi:10.57717/cgt.v2i1.7.
- Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 5:75–91, 1995. doi:10.1142/S0218195995000064.
- Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 05(01n02):75–91, 1995. doi:10.1142/S0218195995000064.
- Faster approximate covering of subcurves under the fréchet distance. In proc. 30th Annual European Symposium on Algorithms (ESA), volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:16, Dagstuhl, Germany, 2022. doi:10.4230/LIPIcs.ESA.2022.28.
- Clustering trajectories for map construction. In proc. 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 1–10, 2017. doi:10.1145/3139958.3139964.
- Improved map construction using subtrajectory clustering. In proc. 4th ACM SIGSPATIAL Workshop on Location-Based Recommendations, Geosocial Networks, and Geoadvertising, pages 1–4, 2020. doi:10.1145/3423334.3431451.
- Detecting commuting patterns by clustering subtrajectories. International Journal of Computational Geometry & Applications, 21(03):253–282, 2011. doi:10.1142/S0218195911003652.
- Approximating (k,ℓ)𝑘ℓ(k,\ell)( italic_k , roman_ℓ )-center clustering for curves. In proc. Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2922–2938, 2019.
- Coresets for (k,ℓ)𝑘ℓ(k,\ell)( italic_k , roman_ℓ )-median clustering under the Fréchet distance. In proc. Conference on Algorithms and Discrete Applied Mathematics, pages 167–180, 2022.
- Curve simplification and clustering under Fréchet distance. In proc. 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1414–1432, 2023.
- Vasek Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4(3):233–235, 1979. doi:10.1287/MOOR.4.3.233.
- Finding complex patterns in trajectory data via geometric set cover. arXiv preprint arXiv:2308.14865, 2023.
- Fast Fréchet queries. Computational Geometry, 46(6):747–755, 2013. doi:10.1016/j.comgeo.2012.11.006.
- Clustering time series under the Fréchet distance. In proc. twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 766–785, 2016.
- Cubic upper and lower bounds for subtrajectory clustering under the continuous Fréchet distance. In proc. 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 173–189, 2022.
- Approximating polygons and subdivisions with minimum link paths. International Journal of Computational Geometry & Applications, 3(4):383–415, 1993. doi:10.1142/S0218195993000257.
- Planar reachability in linear space and constant time. In proc. IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages 370–389. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.30.
- Richard M. Karp. Reducibility among combinatorial problems. In proc. Symposium on the Complexity of Computer Computations, The IBM Research Symposia Series, pages 85–103, 1972. doi:10.1007/978-1-4684-2001-2_9.
- Global curve simplification. European Symposium on Algorithms (ESA), 2019.
- Peter Widmayer. On graphs preserving rectilinear shortest paths in the presence of obstacles. Annals of Operations Research, 33(7):557–575, 1991. doi:10.1007/BF02067242.