Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster, Deterministic and Space Efficient Subtrajectory Clustering (2402.13117v3)

Published 20 Feb 2024 in cs.CG

Abstract: Given a trajectory $T$ and a distance $\Delta$, we wish to find a set $C$ of curves of complexity at most $\ell$, such that we can cover $T$ with subcurves that each are within Fr\'echet distance $\Delta$ to at least one curve in $C$. We call $C$ an $(\ell,\Delta)$-clustering and aim to find an $(\ell,\Delta)$-clustering of minimum cardinality. This problem variant was introduced by Akitaya $et$ $al.$ (2021) and shown to be NP-complete. The main focus has therefore been on bicriterial approximation algorithms, allowing for the clustering to be an $(\ell, \Theta(\Delta))$-clustering of roughly optimal size. We present algorithms that construct $(\ell,4\Delta)$-clusterings of $\mathcal{O}(k \log n)$ size, where $k$ is the size of the optimal $(\ell, \Delta)$-clustering. We use $\mathcal{O}(n \log2 n + n \cdot (k + \ell) \log n)$ space and $\mathcal{O}(k n3 \log4 n)$ time. Our algorithms significantly improve upon the clustering quality (improving the approximation factor in $\Delta$) and size (whenever $\ell \in \Omega(\log n)$). We offer deterministic running times comparable to known expected bounds. Additionally, we give a near-quadratic improvement upon the dependency on $n$ in the space usage.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Subtrajectory clustering: Models and algorithms. In proc. 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), pages 75–87, 2018. doi:10.1145/3196959.3196972.
  2. Near-linear time approximation algorithms for curve simplification. Algorithmica, 42(3):203–219, 2005. doi:10.1007/s00453-005-1165-y.
  3. Subtrajectory clustering: Finding set covers for set systems of subcurves. Computing in Geometry and Topology, 2(1):1:1–1:48, 2023. doi:10.57717/cgt.v2i1.7.
  4. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 5:75–91, 1995. doi:10.1142/S0218195995000064.
  5. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 05(01n02):75–91, 1995. doi:10.1142/S0218195995000064.
  6. Faster approximate covering of subcurves under the fréchet distance. In proc. 30th Annual European Symposium on Algorithms (ESA), volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 28:1–28:16, Dagstuhl, Germany, 2022. doi:10.4230/LIPIcs.ESA.2022.28.
  7. Clustering trajectories for map construction. In proc. 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 1–10, 2017. doi:10.1145/3139958.3139964.
  8. Improved map construction using subtrajectory clustering. In proc. 4th ACM SIGSPATIAL Workshop on Location-Based Recommendations, Geosocial Networks, and Geoadvertising, pages 1–4, 2020. doi:10.1145/3423334.3431451.
  9. Detecting commuting patterns by clustering subtrajectories. International Journal of Computational Geometry & Applications, 21(03):253–282, 2011. doi:10.1142/S0218195911003652.
  10. Approximating (k,ℓ)𝑘ℓ(k,\ell)( italic_k , roman_ℓ )-center clustering for curves. In proc. Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2922–2938, 2019.
  11. Coresets for (k,ℓ)𝑘ℓ(k,\ell)( italic_k , roman_ℓ )-median clustering under the Fréchet distance. In proc. Conference on Algorithms and Discrete Applied Mathematics, pages 167–180, 2022.
  12. Curve simplification and clustering under Fréchet distance. In proc. 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1414–1432, 2023.
  13. Vasek Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4(3):233–235, 1979. doi:10.1287/MOOR.4.3.233.
  14. Finding complex patterns in trajectory data via geometric set cover. arXiv preprint arXiv:2308.14865, 2023.
  15. Fast Fréchet queries. Computational Geometry, 46(6):747–755, 2013. doi:10.1016/j.comgeo.2012.11.006.
  16. Clustering time series under the Fréchet distance. In proc. twenty-seventh annual ACM-SIAM symposium on Discrete algorithms (SODA), pages 766–785, 2016.
  17. Cubic upper and lower bounds for subtrajectory clustering under the continuous Fréchet distance. In proc. 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 173–189, 2022.
  18. Approximating polygons and subdivisions with minimum link paths. International Journal of Computational Geometry & Applications, 3(4):383–415, 1993. doi:10.1142/S0218195993000257.
  19. Planar reachability in linear space and constant time. In proc. IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pages 370–389. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.30.
  20. Richard M. Karp. Reducibility among combinatorial problems. In proc. Symposium on the Complexity of Computer Computations, The IBM Research Symposia Series, pages 85–103, 1972. doi:10.1007/978-1-4684-2001-2_9.
  21. Global curve simplification. European Symposium on Algorithms (ESA), 2019.
  22. Peter Widmayer. On graphs preserving rectilinear shortest paths in the presence of obstacles. Annals of Operations Research, 33(7):557–575, 1991. doi:10.1007/BF02067242.

Summary

We haven't generated a summary for this paper yet.