Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Convergence of Gradient Descent for Large Learning Rates (2402.13108v3)

Published 20 Feb 2024 in cs.LG

Abstract: A vast literature on convergence guarantees for gradient descent and derived methods exists at the moment. However, a simple practical situation remains unexplored: when a fixed step size is used, can we expect gradient descent to converge starting from any initialization? We provide fundamental impossibility results showing that convergence becomes impossible no matter the initialization if the step size gets too big. Looking at the asymptotic value of the gradient norm along the optimization trajectory, we see that there is a sharp transition as the step size crosses a critical value. This has been observed by practitioners, yet the true mechanisms through which this happens remain unclear beyond heuristics. Using results from dynamical systems theory, we provide a proof of this in the case of linear neural networks with a squared loss. We also prove the impossibility of convergence for more general losses without requiring strong assumptions such as Lipschitz continuity for the gradient. We validate our findings through experiments with non-linear networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)

Summary

We haven't generated a summary for this paper yet.