Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Improved Lower Bound on the Number of Pseudoline Arrangements (2402.13107v2)

Published 20 Feb 2024 in math.CO, cs.CG, and cs.DM

Abstract: Arrangements of pseudolines are classic objects in discrete and computational geometry. They have been studied with increasing intensity since their introduction almost 100 years ago. The study of the number $B_n$ of non-isomorphic simple arrangements of $n$ pseudolines goes back to Goodman and Pollack, Knuth, and others. It is known that $B_n$ is in the order of $2{\Theta(n2)}$ and finding asymptotic bounds on $b_n = \frac{\log_2(B_n)}{n2}$ remains a challenging task. In 2011, Felsner and Valtr showed that $0.1887 \leq b_n \le 0.6571$ for sufficiently large $n$. The upper bound remains untouched but in 2020 Dumitrescu and Mandal improved the lower bound constant to $0.2083$. Their approach utilizes the known values of $B_n$ for up to $n=12$. We tackle the lower bound by utilizing dynamic programming and the Lindstr\"om-Gessel-Viennot lemma. Our new bound is $b_n \geq 0.2721$ for sufficiently large $n$. The result is based on a delicate interplay of theoretical ideas and computer assistance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Supplemental data. https://github.com/fcorteskuehnast/counting-arrangements.
  2. Martin Balko. Ramsey numbers and monotone colorings. Journal of Combinatorial Theory, Series A, 163:34–58, 2019. doi:10.1016/j.jcta.2018.11.013.
  3. An Extension Theorem for Signotopes. In 39th International Symposium on Computational Geometry (SoCG 2023), volume 258 of LIPIcs, pages 17:1–17:14. Schloss Dagstuhl, 2023. doi:10.4230/LIPIcs.SoCG.2023.17.
  4. Oriented Matroids, volume 46 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2 edition, 1999. doi:10.1017/CBO9780511586507.
  5. An information-theoretic upper bound of planar graphs using triangulation. In Annual Symposium on Theoretical Aspects of Computer Science (STACS 2003), pages 499–510. Springer, 2003. doi:10.1007/3-540-36494-3_44.
  6. An Information-Theoretic Upper Bound on Planar Graphs Using Well-Orderly Maps, pages 17–46. Birkhäuser, 2011. doi:10.1007/978-0-8176-4904-3_2.
  7. Otfried Cheong. The Ipe extensible drawing editor. http://ipe.otfried.org/.
  8. Fernando Cortés Kühnast. On the number of arrangements of pseudolines. Bachelor’s thesis, Technische Universität Berlin, Germany, 2023. https://fcorteskuehnast.github.io/files/bachelor_thesis.pdf.
  9. New lower bounds for the number of pseudoline arrangements. Journal of Computational Geometry, 11:60–92, 2020. doi:10.20382/jocg.v11i1a3.
  10. Constructing arrangements of lines and hyperplanes with applications. SIAM Journal on Computing, 15(2):341–363, 1986. doi:10.1137/0215024.
  11. Stefan Felsner. On the Number of Arrangements of Pseudolines. Discrete & Computational Geometry, 18(3):257–267, 1997. doi:10.1007/PL00009318.
  12. Pseudoline Arrangements. In C.D. Toth, J. O’Rourke, and J.E. Goodman, editors, Handbook of Discrete and Computational Geometry (3rd ed.). CRC Press, 2018. doi:10.1201/9781315119601.
  13. Arrangements of Pseudocircles: On Circularizability. Discrete & Computational Geometry, Ricky Pollack Memorial Issue, 64:776–813, 2020. doi:10.1007/s00454-019-00077-y.
  14. Coding and Counting Arrangements of Pseudolines. Discrete & Computational Geometry, 46(3), 2011. doi:10.1007/s00454-011-9366-4.
  15. Multidimensional Sorting. SIAM Journal on Computing, 12(3):484–507, 1983. doi:10.1137/0212032.
  16. Branko Grünbaum. Arrangements and Spreads, volume 10 of CBMS Regional Conference Series in Mathematics. AMS, 1972 (reprinted 1980). doi:10/knkd.
  17. Donald E. Knuth. Axioms and Hulls, volume 606 of LNCS. Springer, 1992. doi:10/bwfnz9.
  18. Jan Kynčl. Enumeration of simple complete topological graphs. European Journal of Combinatorics, 30(7):1676–1685, 2009. doi:10.1016/j.ejc.2009.03.005.
  19. Friedrich Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 78:256–267, 1926.
  20. Jiří Matoušek. Lectures on Discrete Geometry. Springer, 2002. doi:10.1007/978-1-4613-0039-7.
  21. How many ways can one draw a graph? Combinatorica, 26(5):559–576, 2006. doi:10.1007/s00493-006-0032-z.
  22. Neil J. A. Sloane. The on-line encyclopedia of integer sequences. http://oeis.org.
Citations (1)

Summary

We haven't generated a summary for this paper yet.