How accurate are simulations and experiments for the lattice energies of molecular crystals? (2402.13059v1)
Abstract: Molecular crystals play a central role in a wide range of scientific fields, including pharmaceuticals and organic semiconductor devices. However, they are challenging systems to model accurately with computational approaches because of a delicate interplay of intermolecular interactions such as hydrogen bonding and van der Waals dispersion forces. Here, by exploiting recent algorithmic developments, we report the first set of diffusion Monte Carlo lattice energies for all 23 molecular crystals in the popular and widely used X23 dataset. Comparisons with previous state-of-the-art lattice energy predictions (on a subset of the dataset) and a careful analysis of experimental sublimation enthalpies reveals that high-accuracy computational methods are now at least as reliable as (computationally derived) experiments for the lattice energies of molecular crystals. Overall, this work demonstrates the feasibility of high-level explicitly correlated electronic structure methods for broad benchmarking studies in complex condensed phase systems, and signposts a route towards closer agreement between experiment and simulation.
- C. Y. Ma, A. A. Moldovan, A. G. Maloney, and K. J. Roberts, “Exploring the csd drug subset: An analysis of lattice energies and constituent intermolecular interactions for the crystal structures of pharmaceuticals,” Journal of Pharmaceutical Sciences, vol. 112, no. 2, pp. 435–445, 2023.
- J. Mei, Y. Diao, A. L. Appleton, L. Fang, and Z. Bao, “Integrated materials design of organic semiconductors for field-effect transistors,” Journal of the American Chemical Society, vol. 135, no. 18, pp. 6724–6746, 2013. PMID: 23557391.
- G. Gryn’ova, K.-H. Lin, and C. Corminboeuf, “Read between the molecules: Computational insights into organic semiconductors,” Journal of the American Chemical Society, vol. 140, no. 48, pp. 16370–16386, 2018. PMID: 30395466.
- O. Ostroverkhova, “Organic optoelectronic materials: Mechanisms and applications,” Chemical Reviews, vol. 116, no. 22, pp. 13279–13412, 2016. PMID: 27723323.
- S. Datta and D. J. W. Grant, “Crystal structures of drugs: advances in determination, prediction and engineering,” Nature Reviews Drug Discovery, vol. 3, 2004.
- S. L. Price, “Predicting crystal structures of organic compounds,” Chem. Soc. Rev., vol. 43, pp. 2098–2111, 2014.
- G. M. Day, “Current approaches to predicting molecular organic crystal structures,” Crystallography Reviews, vol. 17, no. 1, pp. 3–52, 2011.
- S. L. Price, “Control and prediction of the organic solid state: a challenge to theory and experiment,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 474, no. 2217, p. 20180351, 2018.
- G. J. O. Beran, “Modeling polymorphic molecular crystals with electronic structure theory,” Chemical Reviews, vol. 116, no. 9, pp. 5567–5613, 2016. PMID: 27008426.
- J. Hoja, A. M. Reilly, and A. Tkatchenko, “First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure,” WIREs Computational Molecular Science, vol. 7, no. 1, p. e1294, 2017.
- V. Kapil and E. A. Engel, “A complete description of thermodynamic stabilities of molecular crystals,” Proceedings of the National Academy of Sciences, vol. 119, no. 6, p. e2111769119, 2022.
- J. Nyman and G. M. Day, “Modelling temperature-dependent properties of polymorphic organic molecular crystals,” Phys. Chem. Chem. Phys., vol. 18, pp. 31132–31143, 2016.
- A. A. Aina, A. J. Misquitta, and S. L. Price, “A non-empirical intermolecular force-field for trinitrobenzene and its application in crystal structure prediction,” The Journal of Chemical Physics, vol. 154, p. 094123, 03 2021.
- A. J. A. Price, A. Otero-de-la Roza, and E. R. Johnson, “Xdm-corrected hybrid dft with numerical atomic orbitals predicts molecular crystal lattice energies with unprecedented accuracy,” Chem. Sci., vol. 14, pp. 1252–1262, 2023.
- J. C. Sancho-García, J. Aragó, E. Ortí, and Y. Olivier, “Obtaining the lattice energy of the anthracene crystal by modern yet affordable first-principles methods,” The Journal of Chemical Physics, vol. 138, p. 204304, 05 2013.
- C. H. Borca, Z. L. Glick, D. P. Metcalf, L. A. Burns, and C. D. Sherrill, “Benchmark coupled-cluster lattice energy of crystalline benzene and assessment of multi-level approximations in the many-body expansion,” The Journal of Chemical Physics, vol. 158, p. 234102, 06 2023.
- J. Yang, W. Hu, D. Usvyat, D. Matthews, M. Schütz, and G. K.-L. Chan, “Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy,” Science, vol. 345, no. 6197, pp. 640–643, 2014.
- A. Zen, J. G. Brandenburg, J. Klimeš, A. Tkatchenko, D. Alfè, and A. Michaelides, “Fast and accurate quantum monte carlo for molecular crystals,” Proceedings of the National Academy of Sciences, vol. 115, no. 8, pp. 1724–1729, 2018.
- J. Klimes, “Lattice energies of molecular solids from the random phase approximation with singles corrections,” The Journal of Chemical Physics, vol. 145, p. 094506, 09 2016.
- S. Wen and G. J. O. Beran, “Accurate molecular crystal lattice energies from a fragment qm/mm approach with on-the-fly ab initio force field parametrization,” Journal of Chemical Theory and Computation, vol. 7, pp. 3733–3742, 11 2011.
- K. Hongo, M. A. Watson, T. Iitaka, A. Aspuru-Guzik, and R. Maezono, “Diffusion monte carlo study of para-diiodobenzene polymorphism revisited,” Journal of Chemical Theory and Computation, vol. 11, no. 3, pp. 907–917, 2015. PMID: 26579744.
- F. Stein and J. Hutter, “Massively parallel implementation of gradients within the random phase approximation: Application to the polymorphs of benzene,” The Journal of Chemical Physics, vol. 160, p. 024120, 01 2024.
- C. Greenwell, J. L. McKinley, P. Zhang, Q. Zeng, G. Sun, B. Li, S. Wen, and G. J. O. Beran, “Overcoming the difficulties of predicting conformational polymorph energetics in molecular crystals via correlated wavefunction methods,” Chem. Sci., vol. 11, pp. 2200–2214, 2020.
- H.-Z. Ye and T. C. Berkelbach, “Ab initio surface chemistry with chemical accuracy,” https://arxiv.org/abs/2309.14640, 2023.
- F. Della Pia, A. Zen, D. Alfè, and A. Michaelides, “Dmc-ice13: Ambient and high pressure polymorphs of ice from diffusion monte carlo and density functional theory,” The Journal of Chemical Physics, vol. 157, p. 134701, 10 2022.
- Y.-H. Liang, H.-Z. Ye, and T. C. Berkelbach, “Can spin-component scaled MP2 achieve kJ/mol accuracy for cohesive energies of molecular crystals?,” Can spin-component scaled MP2 achieve kJ/mol accuracy for cohesive energies of molecular crystals?, 2023.
- C. T. Sargent, D. P. Metcalf, Z. L. Glick, C. H. Borca, and C. D. Sherrill, “Benchmarking two-body contributions to crystal lattice energies and a range-dependent assessment of approximate methods,” The Journal of Chemical Physics, vol. 158, p. 054112, 02 2023.
- G. A. Dolgonos, J. Hoja, and A. D. Boese, “Revised values for the x23 benchmark set of molecular crystals,” Phys. Chem. Chem. Phys., vol. 21, pp. 24333–24344, 2019.
- A. Otero-de-la Roza and E. R. Johnson, “A benchmark for non-covalent interactions in solids,” The Journal of Chemical Physics, vol. 137, p. 054103, 08 2012.
- A. M. Reilly and A. Tkatchenko, “Understanding the role of vibrations, exact exchange, and many-body van der waals interactions in the cohesive properties of molecular crystals,” The Journal of Chemical Physics, vol. 139, p. 024705, 07 2013.
- J. Acree, William and J. S. Chickos, “Phase transition enthalpy measurements of organic and organometallic compounds. sublimation, vaporization and fusion enthalpies from 1880 to 2010,” Journal of Physical and Chemical Reference Data, vol. 39, p. 043101, 10 2010.
- M. A. Ribeiro da Silva, M. J. Monte, and J. R. Ribeiro, “Thermodynamic study on the sublimation of succinic acid and of methyl- and dimethyl-substituted succinic and glutaric acids,” The Journal of Chemical Thermodynamics, vol. 33, no. 1, pp. 23–31, 2001.
- H. De Wit, J. Van Miltenburg, and C. De Kruif, “Thermodynamic properties of molecular organic crystals containing nitrogen, oxygen, and sulphur 1. vapour pressures and enthalpies of sublimation,” The Journal of Chemical Thermodynamics, vol. 15, no. 7, pp. 651–663, 1983.
- See http://webbook.nist.gov/chemistry/name-ser.html for "NIST Web_Book, and references within". Accessed: July 2023.
- B. X. Shi, A. Zen, V. Kapil, P. R. Nagy, A. Grüneis, and A. Michaelides, “Many-body methods for surface chemistry come of age: Achieving consensus with experiments,” Journal of the American Chemical Society, vol. 145, no. 46, pp. 25372–25381, 2023. PMID: 37948071.
- H.-Z. Ye and T. C. Berkelbach, “CO Adsorption on the Surface of MgO from Periodic Coupled-Cluster Theory with Local Natural Orbitals: Adding to the Consensus,” https://arxiv.org/abs/2309.14651, 2023.
- N. Masios, A. Irmler, T. Schäfer, and A. Grüneis, “Averting the infrared catastrophe in the gold standard of quantum chemistry,” https://arxiv.org/abs/2303.16957, 2023.
- I. Batatia, P. Benner, Y. Chiang, A. M. Elena, D. P. Kovács, J. Riebesell, X. R. Advincula, M. Asta, W. J. Baldwin, N. Bernstein, A. Bhowmik, S. M. Blau, V. Cărare, J. P. Darby, S. De, F. D. Pia, V. L. Deringer, R. Elijošius, Z. El-Machachi, E. Fako, A. C. Ferrari, A. Genreith-Schriever, J. George, R. E. A. Goodall, C. P. Grey, S. Han, W. Handley, H. H. Heenen, K. Hermansson, C. Holm, J. Jaafar, S. Hofmann, K. S. Jakob, H. Jung, V. Kapil, A. D. Kaplan, N. Karimitari, N. Kroupa, J. Kullgren, M. C. Kuner, D. Kuryla, G. Liepuoniute, J. T. Margraf, I.-B. Magdău, A. Michaelides, J. H. Moore, A. A. Naik, S. P. Niblett, S. W. Norwood, N. O’Neill, C. Ortner, K. A. Persson, K. Reuter, A. S. Rosen, L. L. Schaaf, C. Schran, E. Sivonxay, T. K. Stenczel, V. Svahn, C. Sutton, C. van der Oord, E. Varga-Umbrich, T. Vegge, M. Vondrák, Y. Wang, W. C. Witt, F. Zills, and G. Csányi, “A foundation model for atomistic materials chemistry,” 2023.
- A. Merchant, S. Batzner, S. S. Schoenholz, M. Aykol, G. Cheon, and E. D. Cubuk, “Scaling deep learning for materials discovery,” Nature, vol. 624, pp. 80–85, 2023.
- R. J. Needs, M. Towler, N. Drummond, P. López Ríos, and J. Trail, “Variational and diffusion quantum monte carlo calculations with the casino code,” J. Chem. Phys., vol. 152, p. 154106, 2020.
- J. R. Trail and R. J. Needs, “Shape and energy consistent pseudopotentials for correlated electron systems,” The Journal of Chemical Physics, vol. 146, p. 204107, 05 2017.
- A. Zen, J. G. Brandenburg, A. Michaelides, and D. Alfè, “A new scheme for fixed node diffusion quantum monte carlo with pseudopotentials: Improving reproducibility and reducing the trial-wave-function bias,” J. Chem. Phys., vol. 151, p. 134105, 2019.
- J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B, vol. 23, pp. 5048–5079, May 1981.
- “Quantum espresso.” http://www.quantum-espresso.org./.
- “Pwscf.” http://www.pwscf.org./.
- D. Alfè and M. J. Gillan, “Efficient localized basis set for quantum monte carlo calculations on condensed matter,” Phys. Rev. B, vol. 70, p. 161101, Oct 2004.
- W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum monte carlo simulations of solids,” Rev. Mod. Phys., vol. 73, pp. 33–83, Jan 2001.
- A. Zen, S. Sorella, M. J. Gillan, A. Michaelides, and D. Alfè, “Boosting the accuracy and speed of quantum monte carlo: Size consistency and time step,” Phys. Rev. B, vol. 93, p. 241118, Jun 2016.
- L. Fraser, W. Foulkes, G. Rajagopal, R. Needs, S. Kenny, and A. Williamson, “Finite-size effects and coulomb interactions in quantum monte carlo calculations for homogeneous systems with periodic boundary conditions,” Phys. Rev. B, vol. 53, pp. 1814–1832, 1996.
- A. Williamson, G. Rajagopal, R. Needs, L. Fraser, W. Foulkes, Y. Wang, and M.-Y. Chou, “Elimination of coulomb finite-size effects in quantum many-body simulations,” Phys. Rev. B, vol. 55, p. R4851, 1997.
- P. R. C. Kent, R. Q. Hood, A. J. Williamson, R. J. Needs, W. M. C. Foulkes, and G. Rajagopal, “Finite-size errors in quantum many-body simulations of extended systems,” Phys. Rev. B, vol. 59, pp. 1917–1929, 1999.
- J. Klimeš, D. R. Bowler, and A. Michaelides, “Chemical accuracy for the van der waals density functional,” Journal of Physics: Condensed Matter, vol. 22, no. 2, p. 022201, 2009.
- G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys. Rev. B, vol. 47, p. 558, 1993.
- G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium,” Phys. Rev. B, vol. 49, p. 14251, 1994.
- G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mat. Sci., vol. 6, p. 15, 1996.
- G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B., vol. 54, p. 11169, 1996.
- J. R. Trail and R. J. Needs, “Erratum: “smooth relativistic hartree-fock pseudopotentials for h to ba and lu to hg” [j. chem. phys. 122, 174109 (2005)],” The Journal of Chemical Physics, vol. 139, no. 3, p. 039902, 2013.
- J. R. Trail and R. J. Needs, “Norm-conserving hartree–fock pseudopotentials and their asymptotic behavior,” The Journal of Chemical Physics, vol. 122, no. 1, p. 014112, 2005.