Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multigrid on unstructured meshes with regions of low quality cells (2402.12947v1)

Published 20 Feb 2024 in cs.CE

Abstract: The convergence of multigrid methods degrades significantly if a small number of low quality cells are present in a finite element mesh, and this can be a barrier to the efficient and robust application of multigrid on complicated geometric domains. The degraded performance is observed also if intermediate levels in a non-nested geometric multigrid problem have low quality cells, even when the fine grid is high quality. It is demonstrated for geometric multigrid methods that the poor convergence is due to the local failure of smoothers to eliminate parts of error around cells of low quality. To overcome this, a global--local combined smoother is developed to maintain effective relaxation in the presence of a small number of poor quality cells. The smoother involves the application of a standard smoother on the whole domain, followed by local corrections for small subdomains with low quality cells. Two- and three-dimensional numerical experiments demonstrate that the degraded convergence of multigrid for low quality meshes can be restored to the high quality mesh reference case using the proposed smoother. The effect is particularly pronounced for higher-order finite elements. The results provide a basis for developing efficient, non-nested geometric multigrid methods for complicated engineering geometries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Parallel multigrid smoothing: polynomial versus Gauss–Seidel. Journal of Computational Physics, 188(2):593–610, 2003. doi: 10.1016/S0021-9991(03)00194-3.
  2. The FEniCS Project Version 1.5. Archive of Numerical Software, 3(100):9–23, 2015.
  3. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.
  4. PETSc/TAO users manual. Technical Report ANL-21/39 - Revision 3.20, Argonne National Laboratory, 2023a.
  5. PETSc Web page, 2023b. URL https://petsc.org/.
  6. A Multigrid Tutorial. SIAM, second edition, 2000.
  7. Yuxuan Chen. Supporting material. URL https://github.com/yc397/multigrid_examples, 2023.
  8. Thomas Dickopf. On multilevel methods based on non-nested meshes. PhD thesis, University of Bonn, 2010.
  9. An Introduction to Domain Decomposition Methods: Algorithms, Theory, and Parallel Implementation. SIAM, 2015.
  10. Finite element method with local damage on the mesh. ESAIM: M2AN, 53(6):1871–1891, 2019. doi: 10.1051/m2an/2019023.
  11. An augmented Lagrangian preconditioner for the 3D stationary incompressible Navier–Stokes equations at high Reynolds number. SIAM Journal on Scientific Computing, 41(5):A3073–A3096, 2019. doi: 10.1137/18M1219370.
  12. A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations. SMAI Journal of Computational Mathematics, 7:75–96, 2021. doi: 10.5802/smai-jcm.72.
  13. A cost/benefit analysis of simplicial mesh improvement techniques as measured by solution efficiency. International Journal of Computational Geometry & Applications, 10(4):361–382, 2000. doi: 10.1142/S0218195900000218.
  14. Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009. doi: 10.1002/nme.2579.
  15. Wolfgang Hackbusch. Multi-Grid Methods and Applications, volume 4. Springer Science & Business Media, 2013.
  16. Applied Iterative Methods. Courier Corporation, 2012.
  17. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Software, 31(3):351–362, 2005. doi: 10.1145/1089014.1089019.
  18. Krylov-Schur methods in SLEPc. Universitat Politecnica de Valencia, Tech. Rep. STR-7, 2007.
  19. Mesh quality effects on the accuracy of CFD solutions on unstructured meshes. Journal of Computational Physics, 230(20):7670–7686, 2011. doi: 10.1016/j.jcp.2011.06.023.
  20. Aggressive tetrahedral mesh improvement. In Proceedings of the 16th International Meshing Roundtable, pages 3–23. Springer, Berlin, Heidelberg, 2008.
  21. Patrick M. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I – A framework for surface mesh optimization. International Journal for Numerical Methods in Engineering, 48(3):401–420, 2000a. doi: 10.1002/(SICI)1097-0207(20000530)48:3¡401::AID-NME880¿3.0.CO;2-D.
  22. Patrick M. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II – A framework for volume mesh optimization and the condition number of the Jacobian matrix. International Journal for Numerical Methods in Engineering, 48(8):1165–1185, 2000b. doi: 10.1002/(SICI)1097-0207(20000720)48:8¡1165::AID-NME940¿3.0.CO;2-Y.
  23. Patrick M. Knupp. Algebraic mesh quality metrics. SIAM Journal on Scientific Computing, 23(1):193–218, 2001. doi: 10.1137/S1064827500371499.
  24. Behavior of plane relaxation methods as multigrid smoothers. Electronic Transactions on Numerical Analysis, 10:92–114, 2000.
  25. Alternating plane smoothers for multiblock grids. SIAM Journal on Scientific Computing, 22(1):218–242, 2000. doi: 10.1137/S106482759935736X.
  26. DOLFIN: Automated finite element computing. ACM Transactions on Mathematical Software, 37(2):20, 2010. doi: 10.1145/1731022.1731030.
  27. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, volume 84. Springer Science & Business Media, 2012.
  28. D. J. Mavriplis. Three-dimensional unstructured multigrid for the Euler equations. AIAA Journal, 30(7):1753–1761, 1992. doi: 10.2514/3.11133.
  29. Cornelis Willebrordus Oosterlee. A GMRES–based plane smoother in multigrid to solve 3D anisotropic fluid flow problems. Journal of Computational Physics, 130(1):41–53, 1997. doi: 10.1006/jcph.1996.5442.
  30. A comparison of tetrahedron quality measures. Finite Elements in Analysis and Design, 15(3):255–261, 1994. doi: 10.1016/0168-874X(94)90033-7.
  31. Scalable computation of thermomechanical turbomachinery problems. Finite Elements in Analysis and Design, 155:32–42, 2019. doi: 10.1016/j.finel.2018.11.002.
  32. SLEPc users manual. Technical Report DSIC-II/24/02 - Revision 3.20, D. Sistemes Informàtics i Computació, Universitat Politècnica de València, 2023.
  33. Jonathan Shewchuk. What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures. In Proceedings of the 11th International Meshing Roundtable, pages 115–126. IMR, 2002.
  34. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 2004.
  35. A multigrid procedure for three-dimensional flows on non-orthogonal collocated grids. International Journal for Numerical Methods in Fluids, 17(10):887–904, 1993. doi: 10.1002/fld.1650171005.
  36. G. W. Stewart. A Krylov–Schur algorithm for large eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3):601–614, 2002. doi: 10.1137/S0895479800371529.
  37. Multigrid. Academic Press, London, 2000.
  38. Jinchao Xu. Iterative methods by space decomposition and subspace correction. SIAM Review, 34(4):581–613, 1992. doi: 10.1137/1034116.
  39. Jinchao Xu. The method of subspace corrections. Journal of Computational and Applied Mathematics, 128(1):335–362, 2001. doi: 10.1016/S0377-0427(00)00518-5.

Summary

We haven't generated a summary for this paper yet.