Extensive search for axion dark matter over 1\,GHz with CAPP's Main Axion eXperiment (2402.12892v1)
Abstract: We report an extensive high-sensitivity search for axion dark matter above 1\,GHz at the Center for Axion and Precision Physics Research (CAPP). The cavity resonant search, exploiting the coupling between axions and photons, explored the frequency (mass) range of 1.025\,GHz (4.24\,$\mu$eV) to 1.185\,GHz (4.91\,$\mu$eV). We have introduced a number of innovations in this field, demonstrating the practical approach of optimizing all the relevant parameters of axion haloscopes, extending presently available technology. The CAPP 12\,T magnet with an aperture of 320\,mm made of Nb$_3$Sn and NbTi superconductors surrounding a 37-liter ultralight-weight copper cavity is expected to convert DFSZ axions into approximately $102$ microwave photons per second. A powerful dilution refrigerator, capable of keeping the core system below 40\,mK, combined with quantum-noise limited readout electronics, achieved a total system noise of about 200\,mK or below, which corresponds to a background of roughly $4\times 103$ photons per second within the axion bandwidth. The combination of all those improvements provides unprecedented search performance, imposing the most stringent exclusion limits on axion--photon coupling in this frequency range to date. These results also suggest an experimental capability suitable for highly-sensitive searches for axion dark matter above 1\,GHz.
- C. J. Copi, D. N. Schramm, and M. S. Turner, Big-bang nucleosynthesis and the baryon density of the universe, Science 267, 192 (1995).
- N. Aghanim et al., Planck 2018 results - vi. cosmological parameters, Astron. Astrophys. 641, A6 (2020).
- L. Roszkowski, E. M. Sessolo, and S. Trojanowski, WIMP dark matter candidates and searches—current status and future prospects, Reports on Progress in Physics 81, 066201 (2018).
- M. Schumann, Direct detection of WIMP dark matter: concepts and status, Journal of Physics G: Nuclear and Particle Physics 46, 103003 (2019).
- F. Chadha-Day, J. Ellis, and D. J. E. Marsh, Axion dark matter: What is it and why now?, Science Advances 8, eabj3618 (2022).
- Y. K. Semertzidis and S. Youn, Axion dark matter: How to see it?, Science Advances 8, eabm9928 (2022).
- A. M. Green and B. J. Kavanagh, Primordial black holes as a dark matter candidate, Journal of Physics G: Nuclear and Particle Physics 48, 043001 (2021).
- P. Villanueva-Domingo, O. Mena, and S. Palomares-Ruiz, A brief review on primordial black holes as dark matter, Front. Astron. Space Sci. 8 (2021).
- C. Abel et al., Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124, 081803 (2020).
- J. Alexander et al., The storage ring proton EDM experiment, ArXiv 10.48550/arXiv.2205.00830 (2022), 2205.00830 .
- R. D. Peccei and H. R. Quinn, CPCP\mathrm{CP}roman_CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38, 1440 (1977).
- S. Weinberg, A new light boson?, Phys. Rev. Lett. 40, 223 (1978).
- F. Wilczek, Problem of strong PP\mathrm{P}roman_P and TT\mathrm{T}roman_T invariance in the presence of instantons, Phys. Rev. Lett. 40, 229 (1978).
- J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the invisible axion, Physics Letters B 120, 127 (1983).
- L. F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120, 133 (1983).
- M. Dine and W. Fischler, The not-so-harmless axion, Phys. Lett. B 120, 137 (1983).
- F. Takahashi, W. Yin, and A. H. Guth, QCD axion window and low-scale inflation, Phys. Rev. D 98, 015042 (2018).
- P. W. Graham and A. Scherlis, Stochastic axion scenario, Phys. Rev. D 98, 035017 (2018).
- S. Borsanyi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539, 69 (2016).
- V. B. Klaer and G. D. Moore, The dark-matter axion mass, J. of Cosmol. Astropart. Phys. 11, 49 (2017).
- M. Buschmann, J. W. Foster, and B. R. Safdi, Early-universe simulations of the cosmological axion, Phys. Rev. Lett. 124, 161103 (2020).
- M. S. Turner, Periodic signatures for the detection of cosmic axions, Phys. Rev. D 42, 3572 (1990).
- J. E. Kim, Weak-interaction singlet and strong CPCP\mathrm{CP}roman_CP invariance, Phys. Rev. Lett. 43, 103 (1979).
- M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166, 4933 (1980).
- A. P. Zhitnitsky, Possible suppression of axion-hadron interactions, Sov. J. Nucl. Phys. 31:2, 260 (1980).
- M. Dine, W. Fischler, and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Physics Letters B 104, 199 (1981).
- P. Sikivie, Experimental tests of the “invisible” axion, Phys. Rev. Lett. 51, 1415 (1983).
- J. Jeong et al., Search for invisible axion dark matter with a multiple-cell haloscope, Phys. Rev. Lett. 125, 221302 (2020).
- O. Kwon et al., First results from an axion haloscope at CAPP around 10.7 μeV10.7 𝜇eV10.7\text{}\text{ }\mu\mathrm{eV}10.7 italic_μ roman_eV, Phys. Rev. Lett. 126, 191802 (2021).
- J. Kim et al., Near-quantum-noise axion dark matter search at CAPP around 9.5 μeV9.5 𝜇eV9.5\text{}\text{ }\mathrm{\mu}\mathrm{eV}9.5 italic_μ roman_eV, Phys. Rev. Lett. 130, 091602 (2023).
- A. K. Yi et al., Axion dark matter search around 4.55 μeV4.55 𝜇eV4.55\text{}\text{ }\mathrm{\mu}\mathrm{eV}4.55 italic_μ roman_eV with Dine-Fischler-Srednicki-Zhitnitskii sensitivity, Phys. Rev. Lett. 130, 071002 (2023a).
- N. Du et al. (ADMX), Search for invisible axion dark matter with the axion dark matter experiment, Phys. Rev. Lett. 120, 151301 (2018).
- T. Braine et al. (ADMX), Extended search for the invisible axion with the axion dark matter experiment, Phys. Rev. Lett. 124, 101303 (2020).
- C. Bartram et al. (ADMX), Search for invisible axion dark matter in the 3.3−4.2 μeV3.34.2 𝜇eV3.3-4.2\text{}\text{ }\mu\mathrm{eV}3.3 - 4.2 italic_μ roman_eV mass range, Phys. Rev. Lett. 127, 261803 (2021a).
- B. M. Brubaker et al., First results from a microwave cavity axion search at 24 μeV24 𝜇eV24\text{}\text{ }\mu\mathrm{eV}24 italic_μ roman_eV, Phys. Rev. Lett. 118, 061302 (2017a).
- K. Backes et al., A quantum enhanced search for dark matter axions, Nature 590, 238 (2021a).
- M. J. Jewell et al. (HAYSTAC), New results from HAYSTAC’s phase II operation with a squeezed state receiver, Phys. Rev. D 107, 072007 (2023).
- D. Alesini et al., Galactic axions search with a superconducting resonant cavity, Phys. Rev. D 99, 101101 (2019).
- D. Alesini et al., Search for invisible axion dark matter of mass ma=43 μeVsubscriptm𝑎43 𝜇eV{\mathrm{m}}_{a}=43\text{}\text{ }\mu\mathrm{eV}roman_m start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT = 43 italic_μ roman_eV with the QUAX–aγ𝑎𝛾a\gammaitalic_a italic_γ experiment, Phys. Rev. D 103, 102004 (2021).
- B. T. McAllister et al., The organ experiment: An axion haloscope above 15 GHz, Physics of the Dark Universe 18, 67 (2017).
- A. Quiskamp et al., Direct search for dark matter axions excluding alp cogenesis in the 63 to 67 μeV63 to 67 𝜇eV63\text{ }\mathrm{to}\text{ }67\text{}\text{ }\mu\mathrm{eV}63 roman_to 67 italic_μ roman_eV range with the organ experiment, Sci. Adv. 8, 27 (2022).
- A. Caldwell et al., Dielectric haloscopes: A new way to detect axion dark matter, Phys. Rev. Lett. 118, 091801 (2017).
- L. Brouwer et al. (DMRadio), Proposal for a definitive search for GUT-scale QCD axions, Phys. Rev. D 106, 112003 (2022).
- C. Adair et al. (CAST-CAPP), Search for dark matter axions with CAST-CAPP, Nature Communications 13, 6180 (2022).
- V. Anastassopoulos et al. (CAST), New CAST limit on the axion–photon interaction, Nature Phys. 13, 584 (2017a).
- E. Armengaud et al., Physics potential of the International Axion Observatory (IAXO), J. Cosom. Astropart. Phys. 06, 047 (2019).
- R. Ballou et al. (OSQAR), New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall, Phys. Rev. D 92, 092002 (2015).
- K. Ehret et al., New ALPS results on hidden-sector lightweights, Phys. Lett. B 689, 149 (2010).
- R. Baehre et al., Any light particle search II — technical design report, Journal of Instrumentation 8, T09001.
- W. Ma et al., A new member of high field large bore superconducting research magnets family, IOP Conf. Ser. 502, 012104 (2019).
- Çağlar Kutlu et al., Characterization of a flux-driven Josephson parametric amplifier with near quantum-limited added noise for axion search experiments, Supercond. Sci. Technol. 34, 085013 (2021).
- A. K. Yi et al., Search for the sagittarius tidal stream of axion dark matter around 4.55 μev4.55 𝜇ev4.55\text{}\text{ }\mathrm{\mu e{v}}4.55 italic_μ roman_ev, Phys. Rev. D 108, L021304 (2023b).
- https://www.oxinst.com.
- https://www.tokyoinst.co.jp/product_file/file/LCG02_cat01_ja.pdf.
- https://fischerconnectors.com/en/circular-connectors/.
- https://apiezon.com/products/vacuum-greases/apiezon-n-grease/.
- https://bluefors.com/products/liquid-helium-management-products/liquid-helium-plants/.
- https://bluefors.com/products/liquid-helium-management-products/helium-reliquefiers/.
- Comsol multiphysics® v. 6.1.
- https://www.attocube.com.
- J. Ekin, Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing (Oxford University Press, 2006).
- A. Roy and M. Devoret, Introduction to parametric amplification of quantum signals with Josephson circuits, Comptes Rendus Physique 17, 740 (2016).
- Ansys simulation software.
- S. V. Uchaikin et al., will be published soon, Proceedings of LTD20 0, 0 (2023b).
- https://lownoisefactory.com/product/lnf-lnc0-6_2a/.
- G. F. Engen, A new method of characterizing amplifier noise performance, IEEE Trans. Instrum. Meas. 19, 344 (1970).
- P. L. Kapitza, Heat transfer and superfluidity of Helium II, Phys.Rev. 60, 354 (1941).
- W. A. Little, The transport of heat between disimilar solids at low tempeartures, Canadian Journal of Physics 37, 334 (1959).
- S. Lee, Development of a data acquisition software for the CULTASK experiment, J. Phys.: Conf. Ser. 898, 032035 (2017).
- R. Brun and F. Rademakers, ROOT — an object oriented data analysis framework, Nucl. Instrum. Meth. Phys. Res. A 389, 81 (1997).
- https://spectrum-instrumentation.com.
- F. Caspers, private communication, 2015.
- M. Vogelsberger and S. D. M. White, Streams and caustics: the fine-grained structure of ΛΛ\Lambdaroman_Λ cold dark matter haloes, Monthly Notices of the Royal Astronomical Society 413, 1419 (2011), https://academic.oup.com/mnras/article-pdf/413/2/1419/18595473/mnras0413-1419.pdf .
- D. H. H. Hoffmann, J. Jacoby, and K. Zioutas, Gravitational lensing by the sun of non-relativistic penetrating particles, Astroparticle Physics 20, 73 (2003).
- B. R. Patla et al., Flux enhancement of slow-moving particles by sun or Jupyter: Can they be detected on Earth?, The Astrophysical Journal 780, 158 (2013).
- K. Zioutas et al., Search for axions in streaming dark matter (2017), arXiv:1703.01436 [physics.ins-det] .
- H. Fischer, Y. Semertzidis, and K. Zioutas, Search for axions in streaming dark matter, (2017), https://ep-news.web.cern.ch/content/search-axions-streaming-dark-matter.
- https://www.msit.go.kr/bbs/view.do?bbsSeqNo=83&nttSeqNo=3175660.
- S. Ahn et al., Improved axion haloscope search analysis, Journal of High Energy Physics 2021, 297 (2021).
- C. Bartram et al. (ADMX Collaboration), Axion dark matter experiment: Run 1B analysis details, Phys. Rev. D 103, 032002 (2021b).
- H. Chang et al. (TASEH Collaboration), Taiwan axion search experiment with haloscope: CD102 analysis details, Phys. Rev. D 106, 052002 (2022a).
- M. J. Dolan, F. J. Hiskens, and R. R. Volkas, Advancing globular cluster constraints on the axion-photon coupling, Journal of Cosmology and Astroparticle Physics 2022 (10), 096.
- J. Darling, New limits on axionic dark matter from the magnetar PSR J1745-2900, The Astrophysical Journal Letters 900, L28 (2020).
- H. Chang et al. (TASEH Collaboration), First results from the taiwan axion search experiment with a haloscope at 19.6 μeV19.6 𝜇eV19.6\text{}\text{ }\mu\mathrm{eV}19.6 italic_μ roman_eV, Phys. Rev. Lett. 129, 111802 (2022b).
- C. O’Hare, cajohare/axionlimits: Axionlimits, https://cajohare.github.io/AxionLimits/ (2020).
- D. Ahn et al., High quality factor high-temperature superconducting microwave cavity development for the dark matter axion search in a strong magnetic field, ArXiv 10.48550/arXiv.1902.04551 (2019a), 1902.04551 .
- J. Kim, The first axion quark nugget experiment using a haloscope at CAPP, Private communication, presentation at Patras18 (2023).
- J. Kim et al., Exploiting higher-order resonant modes for axion haloscopes, J. Phys. G 47, 035203 (2020).
- S. Bae, S. Youn, and J. Jeong, Tunable photonic crystal haloscope for high-mass axion searches, Phys. Rev. D 107, 015012 (2023).
- Z. Omarov, J. Jeong, and Y. K. Semertzidis, Speeding axion haloscope experiments using heterodyne-variance-based detection with a power meter, Phys. Rev. D 107, 103005 (2023).
- K. Kim and J. Ahn, Quantum tomography of rydberg atom graphs by configurable ancillas, PRX Quantum 4, 020316 (2023).