Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-shot clinical entity recognition in English, French and Spanish: masked language models outperform generative model prompting (2402.12801v2)

Published 20 Feb 2024 in cs.CL

Abstract: LLMs have become the preferred solution for many natural language processing tasks. In low-resource environments such as specialized domains, their few-shot capabilities are expected to deliver high performance. Named Entity Recognition (NER) is a critical task in information extraction that is not covered in recent LLM benchmarks. There is a need for better understanding the performance of LLMs for NER in a variety of settings including languages other than English. This study aims to evaluate generative LLMs, employed through prompt engineering, for few-shot clinical NER. %from the perspective of F1 performance and environmental impact. We compare 13 auto-regressive models using prompting and 16 masked models using fine-tuning on 14 NER datasets covering English, French and Spanish. While prompt-based auto-regressive models achieve competitive F1 for general NER, they are outperformed within the clinical domain by lighter biLSTM-CRF taggers based on masked models. Additionally, masked models exhibit lower environmental impact compared to auto-regressive models. Findings are consistent across the three languages studied, which suggests that LLM prompting is not yet suited for NER production in the clinical domain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. doi:https://doi.org/10.1016/j.jbi.2009.08.007. URL https://www.sciencedirect.com/science/article/pii/S1532046409001087
  2. doi:https://doi.org/10.1016/j.jbi.2017.11.011. URL https://www.sciencedirect.com/science/article/pii/S1532046417302563
  3. doi:10.1186/s12859-017-1857-8.
  4. doi:https://doi.org/10.1016/j.jbi.2021.103684. URL https://www.sciencedirect.com/science/article/pii/S1532046421000137
  5. arXiv:https://academic.oup.com/bioinformatics/article-pdf/38/20/4837/46535173/btac598.pdf, doi:10.1093/bioinformatics/btac598. URL https://doi.org/10.1093/bioinformatics/btac598
  6. doi:https://doi.org/10.1016/j.artmed.2022.102311. URL https://www.sciencedirect.com/science/article/pii/S0933365722000768
  7. arXiv:https://academic.oup.com/jamia/article-pdf/27/10/1529/39739985/ocaa106.pdf, doi:10.1093/jamia/ocaa106. URL https://doi.org/10.1093/jamia/ocaa106
  8. doi:https://doi.org/10.1016/j.jbi.2015.07.010. URL https://www.sciencedirect.com/science/article/pii/S1532046415001501
  9. doi:10.1109/TKDE.2020.2981314. URL https://doi.org/10.1109/TKDE.2020.2981314
  10. doi:10.1145/3522593. URL https://doi.org/10.1145/3522593
  11. doi:https://doi.org/10.1016/j.jbi.2021.103799. URL https://www.sciencedirect.com/science/article/pii/S1532046421001283
  12. doi:10.18653/v1/N18-1202. URL https://aclanthology.org/N18-1202
  13. doi:10.18653/v1/P19-1236. URL https://aclanthology.org/P19-1236
  14. doi:10.1609/aaai.v35i15.17587. URL https://ojs.aaai.org/index.php/AAAI/article/view/17587
  15. doi:https://doi.org/10.1016/j.jbi.2013.12.006. URL https://www.sciencedirect.com/science/article/pii/S1532046413001974
  16. doi:10.18653/v1/2020.clinicalnlp-1.32. URL https://aclanthology.org/2020.clinicalnlp-1.32
  17. doi:10.18653/v1/2022.acl-long.192. URL https://aclanthology.org/2022.acl-long.192
  18. doi:10.18653/v1/2022.naacl-main.380. URL https://aclanthology.org/2022.naacl-main.380
  19. doi:10.18653/v1/2021.emnlp-main.407. URL https://aclanthology.org/2021.emnlp-main.407
  20. doi:10.18653/v1/2021.naacl-main.410. URL https://aclanthology.org/2021.naacl-main.410
  21. doi:10.18653/v1/2022.acl-long.556. URL https://aclanthology.org/2022.acl-long.556
  22. doi:10.18653/v1/2022.emnlp-main.759. URL https://aclanthology.org/2022.emnlp-main.759
  23. arXiv:2304.10428.
  24. doi:10.18653/v1/2022.findings-emnlp.329. URL https://aclanthology.org/2022.findings-emnlp.329
  25. doi:10.1145/3297280.3297378. URL https://doi.org/10.1145/3297280.3297378
  26. doi:10.18653/v1/2020.emnlp-main.516. URL https://aclanthology.org/2020.emnlp-main.516
  27. doi:10.18653/v1/2021.emnlp-main.813. URL https://aclanthology.org/2021.emnlp-main.813
  28. doi:10.18653/v1/2021.acl-long.120. URL https://aclanthology.org/2021.acl-long.120
  29. doi:10.18653/v1/2022.findings-acl.155. URL https://aclanthology.org/2022.findings-acl.155
  30. doi:10.18653/v1/2020.acl-main.128. URL https://aclanthology.org/2020.acl-main.128
  31. doi:10.18653/v1/2023.acl-long.859. URL https://aclanthology.org/2023.acl-long.859
  32. doi:10.18653/v1/2022.naacl-main.420. URL https://aclanthology.org/2022.naacl-main.420
  33. doi:10.3390/app13148359. URL https://www.mdpi.com/2076-3417/13/14/8359
  34. doi:10.18653/v1/2020.acl-main.519. URL https://aclanthology.org/2020.acl-main.519
  35. doi:10.18653/v1/2023.acl-long.764. URL https://aclanthology.org/2023.acl-long.764
  36. doi:10.18653/v1/2021.findings-acl.161. URL https://aclanthology.org/2021.findings-acl.161
  37. doi:10.18653/v1/2023.acl-long.698. URL https://aclanthology.org/2023.acl-long.698
  38. doi:10.3390/info14050262. URL https://www.mdpi.com/2078-2489/14/5/262
  39. doi:10.18653/v1/2021.naacl-main.185. URL https://aclanthology.org/2021.naacl-main.185
  40. doi:https://doi.org/10.1016/j.jbi.2023.104458. URL https://www.sciencedirect.com/science/article/pii/S153204642300179X
  41. doi:https://doi.org/10.1016/j.artmed.2021.102086. URL https://www.sciencedirect.com/science/article/pii/S0933365721000798
  42. doi:10.18653/v1/2023.acl-long.233. URL https://aclanthology.org/2023.acl-long.233
  43. doi:https://doi.org/10.1016/j.artint.2012.03.006. URL https://www.sciencedirect.com/science/article/pii/S0004370212000276
  44. doi:https://doi.org/10.1016/j.jbi.2019.103132. URL https://www.sciencedirect.com/science/article/pii/S1532046419300504
  45. doi:10.3233/978-1-60750-928-8-216.
  46. doi:10.18653/v1/2020.acl-main.747. URL https://aclanthology.org/2020.acl-main.747
  47. doi:10.18653/v1/W19-1909. URL https://aclanthology.org/W19-1909
  48. doi:10.23919/APSIPAASC55919.2022.9980157.
  49. doi:10.18653/v1/2020.acl-main.645. URL https://aclanthology.org/2020.acl-main.645
  50. doi:10.18653/v1/2023.acl-long.896. URL https://aclanthology.org/2023.acl-long.896
  51. doi:10.18653/v1/2022.bionlp-1.19. URL https://aclanthology.org/2022.bionlp-1.19
  52. doi:10.18653/v1/D17-1035. URL https://aclanthology.org/D17-1035
  53. doi:10.18653/v1/p19-1266. URL https://doi.org/10.18653/v1/p19-1266
  54. doi:10.1162/tacla00041. URL https://aclanthology.org/Q18-1041
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Marco Naguib (4 papers)
  2. Xavier Tannier (16 papers)
  3. Aurélie Névéol (10 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets