Few-shot clinical entity recognition in English, French and Spanish: masked language models outperform generative model prompting (2402.12801v2)
Abstract: LLMs have become the preferred solution for many natural language processing tasks. In low-resource environments such as specialized domains, their few-shot capabilities are expected to deliver high performance. Named Entity Recognition (NER) is a critical task in information extraction that is not covered in recent LLM benchmarks. There is a need for better understanding the performance of LLMs for NER in a variety of settings including languages other than English. This study aims to evaluate generative LLMs, employed through prompt engineering, for few-shot clinical NER. %from the perspective of F1 performance and environmental impact. We compare 13 auto-regressive models using prompting and 16 masked models using fine-tuning on 14 NER datasets covering English, French and Spanish. While prompt-based auto-regressive models achieve competitive F1 for general NER, they are outperformed within the clinical domain by lighter biLSTM-CRF taggers based on masked models. Additionally, masked models exhibit lower environmental impact compared to auto-regressive models. Findings are consistent across the three languages studied, which suggests that LLM prompting is not yet suited for NER production in the clinical domain.
- doi:https://doi.org/10.1016/j.jbi.2009.08.007. URL https://www.sciencedirect.com/science/article/pii/S1532046409001087
- doi:https://doi.org/10.1016/j.jbi.2017.11.011. URL https://www.sciencedirect.com/science/article/pii/S1532046417302563
- doi:10.1186/s12859-017-1857-8.
- doi:https://doi.org/10.1016/j.jbi.2021.103684. URL https://www.sciencedirect.com/science/article/pii/S1532046421000137
- arXiv:https://academic.oup.com/bioinformatics/article-pdf/38/20/4837/46535173/btac598.pdf, doi:10.1093/bioinformatics/btac598. URL https://doi.org/10.1093/bioinformatics/btac598
- doi:https://doi.org/10.1016/j.artmed.2022.102311. URL https://www.sciencedirect.com/science/article/pii/S0933365722000768
- arXiv:https://academic.oup.com/jamia/article-pdf/27/10/1529/39739985/ocaa106.pdf, doi:10.1093/jamia/ocaa106. URL https://doi.org/10.1093/jamia/ocaa106
- doi:https://doi.org/10.1016/j.jbi.2015.07.010. URL https://www.sciencedirect.com/science/article/pii/S1532046415001501
- doi:10.1109/TKDE.2020.2981314. URL https://doi.org/10.1109/TKDE.2020.2981314
- doi:10.1145/3522593. URL https://doi.org/10.1145/3522593
- doi:https://doi.org/10.1016/j.jbi.2021.103799. URL https://www.sciencedirect.com/science/article/pii/S1532046421001283
- doi:10.18653/v1/N18-1202. URL https://aclanthology.org/N18-1202
- doi:10.18653/v1/P19-1236. URL https://aclanthology.org/P19-1236
- doi:10.1609/aaai.v35i15.17587. URL https://ojs.aaai.org/index.php/AAAI/article/view/17587
- doi:https://doi.org/10.1016/j.jbi.2013.12.006. URL https://www.sciencedirect.com/science/article/pii/S1532046413001974
- doi:10.18653/v1/2020.clinicalnlp-1.32. URL https://aclanthology.org/2020.clinicalnlp-1.32
- doi:10.18653/v1/2022.acl-long.192. URL https://aclanthology.org/2022.acl-long.192
- doi:10.18653/v1/2022.naacl-main.380. URL https://aclanthology.org/2022.naacl-main.380
- doi:10.18653/v1/2021.emnlp-main.407. URL https://aclanthology.org/2021.emnlp-main.407
- doi:10.18653/v1/2021.naacl-main.410. URL https://aclanthology.org/2021.naacl-main.410
- doi:10.18653/v1/2022.acl-long.556. URL https://aclanthology.org/2022.acl-long.556
- doi:10.18653/v1/2022.emnlp-main.759. URL https://aclanthology.org/2022.emnlp-main.759
- arXiv:2304.10428.
- doi:10.18653/v1/2022.findings-emnlp.329. URL https://aclanthology.org/2022.findings-emnlp.329
- doi:10.1145/3297280.3297378. URL https://doi.org/10.1145/3297280.3297378
- doi:10.18653/v1/2020.emnlp-main.516. URL https://aclanthology.org/2020.emnlp-main.516
- doi:10.18653/v1/2021.emnlp-main.813. URL https://aclanthology.org/2021.emnlp-main.813
- doi:10.18653/v1/2021.acl-long.120. URL https://aclanthology.org/2021.acl-long.120
- doi:10.18653/v1/2022.findings-acl.155. URL https://aclanthology.org/2022.findings-acl.155
- doi:10.18653/v1/2020.acl-main.128. URL https://aclanthology.org/2020.acl-main.128
- doi:10.18653/v1/2023.acl-long.859. URL https://aclanthology.org/2023.acl-long.859
- doi:10.18653/v1/2022.naacl-main.420. URL https://aclanthology.org/2022.naacl-main.420
- doi:10.3390/app13148359. URL https://www.mdpi.com/2076-3417/13/14/8359
- doi:10.18653/v1/2020.acl-main.519. URL https://aclanthology.org/2020.acl-main.519
- doi:10.18653/v1/2023.acl-long.764. URL https://aclanthology.org/2023.acl-long.764
- doi:10.18653/v1/2021.findings-acl.161. URL https://aclanthology.org/2021.findings-acl.161
- doi:10.18653/v1/2023.acl-long.698. URL https://aclanthology.org/2023.acl-long.698
- doi:10.3390/info14050262. URL https://www.mdpi.com/2078-2489/14/5/262
- doi:10.18653/v1/2021.naacl-main.185. URL https://aclanthology.org/2021.naacl-main.185
- doi:https://doi.org/10.1016/j.jbi.2023.104458. URL https://www.sciencedirect.com/science/article/pii/S153204642300179X
- doi:https://doi.org/10.1016/j.artmed.2021.102086. URL https://www.sciencedirect.com/science/article/pii/S0933365721000798
- doi:10.18653/v1/2023.acl-long.233. URL https://aclanthology.org/2023.acl-long.233
- doi:https://doi.org/10.1016/j.artint.2012.03.006. URL https://www.sciencedirect.com/science/article/pii/S0004370212000276
- doi:https://doi.org/10.1016/j.jbi.2019.103132. URL https://www.sciencedirect.com/science/article/pii/S1532046419300504
- doi:10.3233/978-1-60750-928-8-216.
- doi:10.18653/v1/2020.acl-main.747. URL https://aclanthology.org/2020.acl-main.747
- doi:10.18653/v1/W19-1909. URL https://aclanthology.org/W19-1909
- doi:10.23919/APSIPAASC55919.2022.9980157.
- doi:10.18653/v1/2020.acl-main.645. URL https://aclanthology.org/2020.acl-main.645
- doi:10.18653/v1/2023.acl-long.896. URL https://aclanthology.org/2023.acl-long.896
- doi:10.18653/v1/2022.bionlp-1.19. URL https://aclanthology.org/2022.bionlp-1.19
- doi:10.18653/v1/D17-1035. URL https://aclanthology.org/D17-1035
- doi:10.18653/v1/p19-1266. URL https://doi.org/10.18653/v1/p19-1266
- doi:10.1162/tacla00041. URL https://aclanthology.org/Q18-1041
- Marco Naguib (4 papers)
- Xavier Tannier (16 papers)
- Aurélie Névéol (10 papers)