Harish-Chandra Theorem for Two-parameter Quantum Groups (2402.12793v6)
Abstract: This paper is devoted to investigating the centre of two-parameter quantum groups $U_{r,s}(\mathfrak{g})$ via establishing the Harish-Chandra homomorphism. Based on the Rosso form and the representation theory of weight modules, we prove that when rank $\mathfrak{g}$ is even, the Harish-Chandra homomorphism is an isomorphism, and in particular, the centre of the quantum group $\breve{U}{r,s}(\mathfrak{g})$ of the weight lattice type is a polynomial algebra $\mathbb{K}[z{\varpi_1},\cdots,z_{\varpi_n}]$, where canonical central elements $z_\lambda \; (\lambda \in \Lambda+)$ are turned out to be uniformly expressed. For rank $\mathfrak{g}$ to be odd, we figure out a new invertible extra central generator $z_$, which doesn't survive in $U_q(\mathfrak g)$, then the centre of $\breve{U}{r,s}(\mathfrak{g})$ contains $\mathbb{K}[z{\varpi_1},\cdots,z_{\varpi_n}]\otimes_\mathbb K\mathbb K[z_{\frac{1}{\ell}}, z_*{-\frac{1}{\ell}}]$, where $\ell=2$, except $\ell=4$ for $D_{2k+1}$.
- X. Bai and N. Hu, Two-parameter quantum groups of exceptional type Eđ¸Eitalic_E-series and convex PBW-type basis, Algebra Colloq. 15 (4) (2008), 619-636.
- G. Benkart, S.J. Kang and K.H. Lee, On the centre of two-parameter quantum groups, Proc. Roy. Soc. Edinb. Sec. A 136 (3) (2006), 445-472.
- G. Benkart and S. Witherspoon, A Hopf structure for down-up algebras, Math. Zeit. 238 (3) (2001), 523-553.
- â, Two-parameter quantum groups and Drinfelâd doubles, Algebras and Rep. Theory 7 (3) (2004), 261-286.
- N. Bergeron, Y. Gao and N. Hu, Drinfelâd doubles and Lusztigâs symmetries of two-parameter quantum groups, J. Algebra, 301 (1) (2006), 378-405.
- â, Representations of two-parameter quantum orthogonal groups and symplectic groups, in: AMS/IP Stud. Adv. Math., 39, Amer. Math. Soc., Providence, RI, 2007, 1-21.
- R. W. Carter, Lie algebras of finite and affine type, Cambridge Studies in Advanced Mathematics, 96. Cambridge University Press, Cambridge, 2005.
- Z. Chang and Y. Wang, Central extensions of generalized orthosymplectic Lie seralgebras, Sci. China Math. 60 (2), 223-260.
- X. Chen, N. Hu, and X. Wang, Convex PBW-type Lyndon bases and restricted two-parameter quantum group of type F4subscriptđš4F_{4}italic_F start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT, Acta. Math. Sin.-Eng. Ser. 39 (2023), 1053-1084.
- Y. Dai, Explicit generators of the centre of the quantum group, Commun. Math. Stat. 11 (2023), 541-562.
- Y. Dai and Y. Zhang, Explicit generators and relations for the centre of the quantum group, ArXiv: 2102.07407.
- C. De Concini and V. G. Kac, Representations of quantum groups at roots of 1111, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), 471-506, Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990.
- C. De Concini, V. G. Kac and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1) (1992), 151-189.
- â, Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157 (2) (1993), 405-427.
- â, Some quantum analogues of solvable Lie groups, Geometry and analysis (Bombay, 1992), 41-65, Tata Inst. Fund. Res., Bombay, 1995.
- C. De Concini and C. Procesi, Quantum groups. in DđˇDitalic_D-modules, representation theory, and quantum groups, Lecture Notes in Math. 1565, Springer, Berlin, 1993.
- J. Ding and P. Etingof, Center of a quantum affine algebra at the critical level, Math. Res. Lett. (1) 4 (1994), 469-480.
- V. G. Drinfeld, Quantum groups, In: Proceedings of International Congress of Mathematicans, Providence: Amer Math Soc , 1986, 798-820.
- J. Duan, On the center of two-parameter quantum group Ur.sâ˘(sâ˘o5)subscriptđformulae-sequenceđđ đ subscriptđ5U_{r.s}(so_{5})italic_U start_POSTSUBSCRIPT italic_r . italic_s end_POSTSUBSCRIPT ( italic_s italic_o start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ), Masterâs thesis, East China Normal University, 2009.
- P. I. Etingof, Central elements for quantum affine algebras and affine Macdonaldâs operators, Math. Research Lett. (2) (1995), 611â628.
- S. Gan, On the center of two-parameter quantum group Ur.sâ˘(G2)subscriptđformulae-sequenceđđ subscriptđş2U_{r.s}(G_{2})italic_U start_POSTSUBSCRIPT italic_r . italic_s end_POSTSUBSCRIPT ( italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), Masterâs thesis, East China Normal University, 2010.
- M. D. Gould, R. B. Zhang and A. J. Bracken, Generalized Gelâfand invariants and characteristic identities for quantum groups, J. Math. Phys. 32 (9) (1991), 2298-2303.
- L. D. Faddeev, N. Y. Reshetikhin and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, In: Algebraic Analysis, vol. 1, 129-139, Academic Press, Boston, MA, 1988.
- J. Hu and Y. Zhang, Quantum double of Uqâ˘((sâ˘l2)⊽0)subscriptđđsuperscriptđ subscriptđ2absent0U_{q}((sl_{2})^{\leqslant 0})italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( ( italic_s italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ⊽ 0 end_POSTSUPERSCRIPT ) , J. Algebra 317 (1) (2007), 87-110.
- N. Hu, Quantum divided power algebra, qđqitalic_q-derivatives, and some new quantum groups, J. Algebra 232 (2) (2000), 507-540.
- N. Hu and Y. Pei, Notes on two-parameter groups (I), Sci. in China, Ser. A. 51 (6) (2008), 1101-1110.
- â, Notes on two-parameter groups (II), Comm. in Algebra 40 (9) (2012), 3202-3220.
- N. Hu, M. Rosso and H. Zhang, Two-parameter quantum affine algebra Ur,sâ˘(đ°â˘đŠ~n)subscriptđđđ subscriptnormal-~đ°đŠđU_{r,s}({\tilde{\mathfrak{sl}}_{n}})italic_U start_POSTSUBSCRIPT italic_r , italic_s end_POSTSUBSCRIPT ( over~ start_ARG fraktur_s fraktur_l end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ), Drinfelâd realization and quantum affine Lyndon basis, Comm. Math. Phys. 278 (2) (2008), 453-486.
- N. Hu and Q. Shi, Two-parameter Quantum group of exceptional type G2subscriptđş2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and Lusztigâs symmetries, Pacific J. Math. 230 (2007), 327-345.
- N. Hu and Y. Shi, On the centre of two-parameter quantum groups Ur,sâ˘(đ¤)subscriptđđđ đ¤U_{r,s}(\mathfrak{g})italic_U start_POSTSUBSCRIPT italic_r , italic_s end_POSTSUBSCRIPT ( fraktur_g ) for type BnsubscriptđľđB_{n}italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT with n even, J. Geom. Phys. 86 (2014), 422-433.
- N. Hu and X. Wang, Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type G2subscriptđş2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Pacific J. of Math. 241 (2) (2009), 243-273.
- â, Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type BđľBitalic_B, J. Geom. Phys. 60 (3) (2010), 430-453.
- J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Math., 6, Amer. Math. Soc, Providence, RI, 1996.
- M. Jimbo, A qđqitalic_q-difference anologue of Uâ˘(đ¤)đđ¤U(\mathfrak{g})italic_U ( fraktur_g ) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1986), 63-69.
- A. Joseph and G. Letzter, Local finiteness of the adjoint action for quantized enveloping algebras, Journal of Algebra 153 (1992), 289-318.
- L. Li, L. Xia and Y. Zhang, On the center of the quantized enveloping algebra of a simple Lie algebra, ArXiv: 1607.00802.
- â, On The Centers of quantum groups of Ansubscriptđ´đA_{n}italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT type, Sci. China Math. 61 (2) (2018), 287-294.
- F. Liu, N. Hu and N. Jing, Quantum supergroup Ur,sâ˘(oâ˘sâ˘pâ˘(1,2))subscriptđđđ đđ đ12U_{r,s}(osp(1,2))italic_U start_POSTSUBSCRIPT italic_r , italic_s end_POSTSUBSCRIPT ( italic_o italic_s italic_p ( 1 , 2 ) ), scasimir operators, and Dickson polynomials, J. Algebra Appl. 23 (1) (2024), No. 2450003, 18 pages.
- Y. Luo, Y. Wang and Y. Ye, On the Harish-Chandra homomorphism for quantum superalgebras, Comm. Math. Phys. 393 (3) (2022), 1483â1527.
- Y. Pei, N. Hu and M. Rosso, Multi-parameter quantum groups and quantum shuffles (I), Contemp. Math., 506, A. M. S., Providence, RI, 2010, 145-171.
- N. Yu. Reshetikhin, Quasitriangular Hopf algebras and invariants of links, Algebra i Analiz, vol. 1, issue 2 (1989), 169â188.
- N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990), 133-142.
- M. Rosso, Analogues de la forme de Killing et du thĂŠorème dâHarish-Chandra pour les groupes quantiques, Annales scientifiques de lâĂ.N.S. 4e sĂŠrie, 23 (3) (1990), 445-467.
- T. Tanisaki, Harish-Chandra isomorphisms for quantum algebras, Commun. Math. Phys. 127 (1990), 555-571.
- T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal Rđ Ritalic_R-matrices for quantum algebras, Infinite analysis, Part A, B (Kyoto, 1991), 941-961, Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992.
- V.G. Turaev, Quantum invariants of knots and 3333-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter & Co., Berlin, x+588 pp., 1994.
- R. B. Zhang, M. D. Gould and A. J. Bracken, Quantum group invariants and link polynomials, Commun. Math. Phys. 137 (1991), 13-27.