Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harish-Chandra Theorem for Two-parameter Quantum Groups (2402.12793v6)

Published 20 Feb 2024 in math.QA

Abstract: This paper is devoted to investigating the centre of two-parameter quantum groups $U_{r,s}(\mathfrak{g})$ via establishing the Harish-Chandra homomorphism. Based on the Rosso form and the representation theory of weight modules, we prove that when rank $\mathfrak{g}$ is even, the Harish-Chandra homomorphism is an isomorphism, and in particular, the centre of the quantum group $\breve{U}{r,s}(\mathfrak{g})$ of the weight lattice type is a polynomial algebra $\mathbb{K}[z{\varpi_1},\cdots,z_{\varpi_n}]$, where canonical central elements $z_\lambda \; (\lambda \in \Lambda+)$ are turned out to be uniformly expressed. For rank $\mathfrak{g}$ to be odd, we figure out a new invertible extra central generator $z_$, which doesn't survive in $U_q(\mathfrak g)$, then the centre of $\breve{U}{r,s}(\mathfrak{g})$ contains $\mathbb{K}[z{\varpi_1},\cdots,z_{\varpi_n}]\otimes_\mathbb K\mathbb K[z_{\frac{1}{\ell}}, z_*{-\frac{1}{\ell}}]$, where $\ell=2$, except $\ell=4$ for $D_{2k+1}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. X. Bai and N. Hu, Two-parameter quantum groups of exceptional type E𝐸Eitalic_E-series and convex PBW-type basis, Algebra Colloq. 15 (4) (2008), 619-636.
  2. G. Benkart, S.J. Kang and K.H. Lee, On the centre of two-parameter quantum groups, Proc. Roy. Soc. Edinb. Sec. A 136 (3) (2006), 445-472.
  3. G. Benkart and S. Witherspoon, A Hopf structure for down-up algebras, Math. Zeit. 238 (3) (2001), 523-553.
  4. —, Two-parameter quantum groups and Drinfel’d doubles, Algebras and Rep. Theory 7 (3) (2004), 261-286.
  5. N. Bergeron, Y. Gao and N. Hu, Drinfel’d doubles and Lusztig’s symmetries of two-parameter quantum groups, J. Algebra, 301 (1) (2006), 378-405.
  6. —, Representations of two-parameter quantum orthogonal groups and symplectic groups, in: AMS/IP Stud. Adv. Math., 39, Amer. Math. Soc., Providence, RI, 2007, 1-21.
  7. R. W. Carter, Lie algebras of finite and affine type, Cambridge Studies in Advanced Mathematics, 96. Cambridge University Press, Cambridge, 2005.
  8. Z. Chang and Y. Wang, Central extensions of generalized orthosymplectic Lie seralgebras, Sci. China Math. 60 (2), 223-260.
  9. X. Chen, N. Hu, and X. Wang, Convex PBW-type Lyndon bases and restricted two-parameter quantum group of type F4subscript𝐹4F_{4}italic_F start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT, Acta. Math. Sin.-Eng. Ser. 39 (2023), 1053-1084.
  10. Y. Dai, Explicit generators of the centre of the quantum group, Commun. Math. Stat. 11 (2023), 541-562.
  11. Y. Dai and Y. Zhang, Explicit generators and relations for the centre of the quantum group, ArXiv: 2102.07407.
  12. C. De Concini and V. G. Kac, Representations of quantum groups at roots of 1111, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), 471-506, Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990.
  13. C. De Concini, V. G. Kac and C. Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1) (1992), 151-189.
  14. —, Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157 (2) (1993), 405-427.
  15. —, Some quantum analogues of solvable Lie groups, Geometry and analysis (Bombay, 1992), 41-65, Tata Inst. Fund. Res., Bombay, 1995.
  16. C. De Concini and C. Procesi, Quantum groups. in D𝐷Ditalic_D-modules, representation theory, and quantum groups, Lecture Notes in Math. 1565, Springer, Berlin, 1993.
  17. J. Ding and P. Etingof, Center of a quantum affine algebra at the critical level, Math. Res. Lett. (1) 4 (1994), 469-480.
  18. V. G. Drinfeld, Quantum groups, In: Proceedings of International Congress of Mathematicans, Providence: Amer Math Soc , 1986, 798-820.
  19. J. Duan, On the center of two-parameter quantum group Ur.s⁢(s⁢o5)subscript𝑈formulae-sequence𝑟𝑠𝑠subscript𝑜5U_{r.s}(so_{5})italic_U start_POSTSUBSCRIPT italic_r . italic_s end_POSTSUBSCRIPT ( italic_s italic_o start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ), Master’s thesis, East China Normal University, 2009.
  20. P. I. Etingof, Central elements for quantum affine algebras and affine Macdonald’s operators, Math. Research Lett. (2) (1995), 611–628.
  21. S. Gan, On the center of two-parameter quantum group Ur.s⁢(G2)subscript𝑈formulae-sequence𝑟𝑠subscript𝐺2U_{r.s}(G_{2})italic_U start_POSTSUBSCRIPT italic_r . italic_s end_POSTSUBSCRIPT ( italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), Master’s thesis, East China Normal University, 2010.
  22. M. D. Gould, R. B. Zhang and A. J. Bracken, Generalized Gel’fand invariants and characteristic identities for quantum groups, J. Math. Phys. 32 (9) (1991), 2298-2303.
  23. L. D. Faddeev, N. Y. Reshetikhin and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, In: Algebraic Analysis, vol. 1, 129-139, Academic Press, Boston, MA, 1988.
  24. J. Hu and Y. Zhang, Quantum double of Uq⁢((s⁢l2)⩽0)subscript𝑈𝑞superscript𝑠subscript𝑙2absent0U_{q}((sl_{2})^{\leqslant 0})italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( ( italic_s italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ⩽ 0 end_POSTSUPERSCRIPT ) , J. Algebra 317 (1) (2007), 87-110.
  25. N. Hu, Quantum divided power algebra, q𝑞qitalic_q-derivatives, and some new quantum groups, J. Algebra 232 (2) (2000), 507-540.
  26. N. Hu and Y. Pei, Notes on two-parameter groups (I), Sci. in China, Ser. A. 51 (6) (2008), 1101-1110.
  27. —, Notes on two-parameter groups (II), Comm. in Algebra 40 (9) (2012), 3202-3220.
  28. N. Hu, M. Rosso and H. Zhang, Two-parameter quantum affine algebra Ur,s⁢(𝔰⁢𝔩~n)subscript𝑈𝑟𝑠subscriptnormal-~𝔰𝔩𝑛U_{r,s}({\tilde{\mathfrak{sl}}_{n}})italic_U start_POSTSUBSCRIPT italic_r , italic_s end_POSTSUBSCRIPT ( over~ start_ARG fraktur_s fraktur_l end_ARG start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ), Drinfel’d realization and quantum affine Lyndon basis, Comm. Math. Phys. 278 (2) (2008), 453-486.
  29. N. Hu and Q. Shi, Two-parameter Quantum group of exceptional type G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and Lusztig’s symmetries, Pacific J. Math. 230 (2007), 327-345.
  30. N. Hu and Y. Shi, On the centre of two-parameter quantum groups Ur,s⁢(𝔤)subscript𝑈𝑟𝑠𝔤U_{r,s}(\mathfrak{g})italic_U start_POSTSUBSCRIPT italic_r , italic_s end_POSTSUBSCRIPT ( fraktur_g ) for type Bnsubscript𝐵𝑛B_{n}italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT with n even, J. Geom. Phys. 86 (2014), 422-433.
  31. N. Hu and X. Wang, Convex PBW-type Lyndon basis and restricted two-parameter quantum groups of type G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, Pacific J. of Math. 241 (2) (2009), 243-273.
  32. —, Convex PBW-type Lyndon bases and restricted two-parameter quantum groups of type B𝐵Bitalic_B, J. Geom. Phys. 60 (3) (2010), 430-453.
  33. J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Math., 6, Amer. Math. Soc, Providence, RI, 1996.
  34. M. Jimbo, A q𝑞qitalic_q-difference anologue of U⁢(𝔤)𝑈𝔤U(\mathfrak{g})italic_U ( fraktur_g ) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1986), 63-69.
  35. A. Joseph and G. Letzter, Local finiteness of the adjoint action for quantized enveloping algebras, Journal of Algebra 153 (1992), 289-318.
  36. L. Li, L. Xia and Y. Zhang, On the center of the quantized enveloping algebra of a simple Lie algebra, ArXiv: 1607.00802.
  37. —, On The Centers of quantum groups of Ansubscript𝐴𝑛A_{n}italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT type, Sci. China Math. 61 (2) (2018), 287-294.
  38. F. Liu, N. Hu and N. Jing, Quantum supergroup Ur,s⁢(o⁢s⁢p⁢(1,2))subscript𝑈𝑟𝑠𝑜𝑠𝑝12U_{r,s}(osp(1,2))italic_U start_POSTSUBSCRIPT italic_r , italic_s end_POSTSUBSCRIPT ( italic_o italic_s italic_p ( 1 , 2 ) ), scasimir operators, and Dickson polynomials, J. Algebra Appl. 23 (1) (2024), No. 2450003, 18 pages.
  39. Y. Luo, Y. Wang and Y. Ye, On the Harish-Chandra homomorphism for quantum superalgebras, Comm. Math. Phys. 393 (3) (2022), 1483–1527.
  40. Y. Pei, N. Hu and M. Rosso, Multi-parameter quantum groups and quantum shuffles (I), Contemp. Math., 506, A. M. S., Providence, RI, 2010, 145-171.
  41. N. Yu. Reshetikhin, Quasitriangular Hopf algebras and invariants of links, Algebra i Analiz, vol. 1, issue 2 (1989), 169–188.
  42. N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky, Central extensions of quantum current groups, Lett. Math. Phys. 19 (1990), 133-142.
  43. M. Rosso, Analogues de la forme de Killing et du théorème d’Harish-Chandra pour les groupes quantiques, Annales scientifiques de l’É.N.S. 4e série, 23 (3) (1990), 445-467.
  44. T. Tanisaki, Harish-Chandra isomorphisms for quantum algebras, Commun. Math. Phys. 127 (1990), 555-571.
  45. T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal R𝑅Ritalic_R-matrices for quantum algebras, Infinite analysis, Part A, B (Kyoto, 1991), 941-961, Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992.
  46. V.G. Turaev, Quantum invariants of knots and 3333-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter & Co., Berlin, x+588 pp., 1994.
  47. R. B. Zhang, M. D. Gould and A. J. Bracken, Quantum group invariants and link polynomials, Commun. Math. Phys. 137 (1991), 13-27.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com