Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum computation of conical intersections on a programmable superconducting quantum processor (2402.12708v2)

Published 20 Feb 2024 in quant-ph

Abstract: Conical intersections (CIs) are pivotal in many photochemical processes. Traditional quantum chemistry methods, such as the state-average multi-configurational methods, face computational hurdles in solving the electronic Schr\"odinger equation within the active space on classical computers. While quantum computing offers a potential solution, its feasibility in studying CIs, particularly on real quantum hardware, remains largely unexplored. Here, we present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent field method based on the variational quantum eigensolver (VQE-SA-CASSCF) on a superconducting quantum processor. This approach is applied to investigate CIs in two prototypical systems - ethylene (C2H4) and triatomic hydrogen (H3). We illustrate that VQE-SA-CASSCF, coupled with ongoing hardware and algorithmic enhancements, can lead to a correct description of CIs on existing quantum devices. These results lay the groundwork for exploring the potential of quantum computing to study CIs in more complex systems in the future.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (88)
  1. Conical intersections: electronic structure, dynamics & spectroscopy, vol. 15 (World Scientific, 2004).
  2. Beyond born-oppenheimer: Molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55, 127–158 (2004). PMID: 15117250.
  3. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 58, 613–634 (2007). PMID: 17291184.
  4. Matsika, S. Conical Intersections in Molecular Systems, chap. 2, 83–124 (John Wiley & Sons, Ltd, 2007).
  5. Nonadiabatic events and conical intersections. Annu. Rev. Phys. Chem. 62, 621–643 (2011). PMID: 21219147.
  6. Levine, B. G. et al. Conical intersections at the nanoscale: Molecular ideas for materials. Annu. Rev. Phys. Chem. 70, 21–43 (2019). PMID: 30633637.
  7. Shen, L. et al. Role of multistate intersections in photochemistry. J. Phys. Chem. Lett. 11, 8490–8501 (2020).
  8. Matsika, S. Electronic structure methods for the description of nonadiabatic effects and conical intersections. Chem. Rev. 121, 9407–9449 (2021).
  9. Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys. 68, 985–1013 (1996).
  10. De Sio, A. et al. Intermolecular conical intersections in molecular aggregates. Nat. Nanotechnol. 16, 63–68 (2021).
  11. Lischka, H. et al. Multireference approaches for excited states of molecules. Chem. Rev. 118, 7293–7361 (2018).
  12. Ab initio quantum chemistry using the density matrix renormalization group. J. Chem. Phys. 110, 4127–4130 (1999).
  13. The density matrix renormalization group in quantum chemistry. Annu. Rev. Phys. Chem. 62, 465–481 (2011).
  14. Fermion monte carlo without fixed nodes: A game of life, death, and annihilation in slater determinant space. J. Chem. Phys. 131 (2009).
  15. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).
  16. Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010).
  17. Simulating chemistry using quantum computers. Annu. Rev. Phys. Chem. 62, 185–207 (2011).
  18. Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).
  19. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).
  20. Quantum computational chemistry. Rev. Mod. Phys. 92 (2020).
  21. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev. 120, 12685–12717 (2020).
  22. Emerging quantum computing algorithms for quantum chemistry. Wiley Interdiscip. Rev. Comput. Mol. Sci. e1580 (2021).
  23. Whitlow, J. et al. Quantum simulation of conical intersections using trapped ions. Nat. Chem. 15, 1509–1514 (2023).
  24. Valahu, C. H. et al. Direct observation of geometric-phase interference in dynamics around a conical intersection. Nat. Chem. 15, 1503–1508 (2023).
  25. O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).
  26. Motta, M. et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16, 205–210 (2020).
  27. Hybrid quantum-classical algorithms and quantum error mitigation. J. Phys. Soc. Japan 90, 032001 (2021).
  28. Tilly, J. et al. The variational quantum eigensolver: A review of methods and best practices. Phys. Rep. 986, 1–128 (2022).
  29. Preskill, J. Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018).
  30. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5 (2014).
  31. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A 95 (2017).
  32. Hempel, C. et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X 8 (2018).
  33. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10 (2019).
  34. Variational quantum algorithms for discovering hamiltonian spectra. Phys. Rev. A 99 (2019).
  35. Arute, F. et al. Hartree-fock on a superconducting qubit quantum computer. Science 369, 1084–1089 (2020).
  36. Cerezo, M. et al. Variational quantum algorithms. Nature Reviews Physics 3, 625–644 (2021).
  37. Tang, H. L. et al. Qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor. PRX Quantum 2 (2021).
  38. Takeshita, T. et al. Increasing the representation accuracy of quantum simulations of chemistry without extra quantum resources. Phys. Rev. X 10, 011004 (2020).
  39. Tilly, J. et al. Reduced density matrix sampling: Self-consistent embedding and multiscale electronic structure on current generation quantum computers. Phys. Rev. Res. 3, 033230 (2021).
  40. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A 95, 042308 (2017).
  41. Colless, J. I. et al. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Phys. Rev. X 8, 011021 (2018).
  42. Variational quantum computation of excited states. Quantum 3, 156 (2019).
  43. Subspace-search variational quantum eigensolver for excited states. Phys. Rev. Res. 1, 033062 (2019).
  44. Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett. 122, 230401 (2019).
  45. Variational quantum packaged deflation for arbitrary excited states. Quantum Engineering 3 (2021).
  46. Ollitrault, P. J. et al. Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor. Phys. Rev. Res. 2, 043140 (2020).
  47. Quantum simulation of conical intersections. arXiv preprint arXiv:2401.15565 (2024).
  48. Quantum computation of molecular response properties. Phys. Rev. Res. 2, 033324 (2020).
  49. Variational quantum eigensolver for dynamic correlation functions. Phys. Rev. A 104, 032405 (2021).
  50. Huang, K. et al. Variational quantum computation of molecular linear response properties on a superconducting quantum processor. J. Phys. Chem. Lett. 13, 9114–9121 (2022).
  51. Sokolov, I. O. et al. Microcanonical and finite-temperature ab initio molecular dynamics simulations on quantum computers. Phys. Rev. Res. 3 (2021).
  52. Ab initio molecular dynamics on quantum computers. J. Chem. Phys. 154, 164103 (2021).
  53. Sokolov, I. O. et al. Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents? J. Chem. Phys. 152 (2020).
  54. Mizukami, W. et al. Orbital optimized unitary coupled cluster theory for quantum computer. Phys. Rev. Res. 2, 033421 (2020).
  55. Improving the accuracy of variational quantum eigensolvers with fewer qubits using orbital optimization. J. Chem. Theory Comput. 19, 790–798 (2023).
  56. Complete active space methods for nisq devices: The importance of canonical orbital optimization for accuracy and noise resilience. J. Chem. Theory Comput. 19, 2863–2872 (2023).
  57. Yalouz, S. et al. A state-averaged orbital-optimized hybrid quantum–classical algorithm for a democratic description of ground and excited states. Quantum Sci. Technol. 6, 024004 (2021).
  58. Fitzpatrick, A. et al. A self-consistent field approach for the variational quantum eigensolver: orbital optimization goes adaptive. arXiv preprint arXiv:2212.11405 (2022).
  59. Omiya, K. et al. Analytical energy gradient for state-averaged orbital-optimized variational quantum eigensolvers and its application to a photochemical reaction. J. Chem. Theory Comput. 18, 741–748 (2022).
  60. Yalouz, S. et al. Analytical nonadiabatic couplings and gradients within the state-averaged orbital-optimized variational quantum eigensolver. J. Chem. Theory Comput. 18, 776–794 (2022).
  61. Molecular electronic-structure theory (John Wiley & Sons, 2014).
  62. About the pauli exclusion principle. Z. Phys. 47, 631 (1928).
  63. The bravyi-kitaev transformation for quantum computation of electronic structure. J. Chem. Phys. 137, 224109 (2012).
  64. A general second order complete active space self-consistent-field solver for large-scale systems. Chem. Phys. Lett. 683, 291–299 (2017). Ahmed Zewail (1946-2016) Commemoration Issue of Chemical Physics Letters.
  65. Sun, Q. et al. Pyscf: the python-based simulations of chemistry framework. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1340 (2018).
  66. Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit gates. Phys. Rev. Appl. 10, 054062 (2018).
  67. Li, X.-G. et al. Mapping a topology-disorder phase diagram with a quantum simulator (2023). eprint 2301.12138.
  68. Conical intersections and double excitations in time-dependent density functional theory. Mol. Phys. 104, 1039–1051 (2006).
  69. Tapering off qubits to simulate fermionic hamiltonians. arXiv preprint arXiv:1701.08213 (2017).
  70. Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).
  71. Powell, M. J. D. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation, 51–67 (Springer Netherlands, Dordrecht, 1994). URL https://doi.org/10.1007/978-94-015-8330-5_4.
  72. Measurement optimization in the variational quantum eigensolver using a minimum clique cover. J. Chem. Phys. 152, 124114 (2020).
  73. McEwen, M. et al. Removing leakage-induced correlated errors in superconducting quantum error correction. Nat. Commun. 12, 1761 (2021).
  74. scikit-optimize/scikit-optimize (v0.9.0) (2021).
  75. Wang, R. et al. Leveraging junk information to enhance the quantum error mitigation (2024). eprint arXiv2402.10480.
  76. Challenges in the use of quantum computing hardware-efficient ansätze in electronic structure theory. J. Phys. Chem. A (2023).
  77. Physics-constrained hardware-efficient ansatz on quantum computers that is universal, systematically improvable, and size-consistent. arXiv preprint arXiv:2307.03563 (2023).
  78. Low-cost error mitigation by symmetry verification. Phys. Rev. A 98, 062339 (2018).
  79. Sagastizabal, R. et al. Experimental error mitigation via symmetry verification in a variational quantum eigensolver. Phys. Rev. A 100, 010302 (2019).
  80. McClean, J. R. et al. Openfermion: the electronic structure package for quantum computers. Quantum Sci. Technol. 5, 034014 (2020).
  81. MindQuantum Developer. Mindquantum, version 0.6.0 (2021). URL https://gitee.com/mindspore/mindquantum.
  82. Exploring network structure, dynamics, and function using networkx. Tech. Rep., Los Alamos National Lab.(LANL), Los Alamos, NM (United States) (2008).
  83. Zhao, S. K. et al. Probing operator spreading via floquet engineering in a superconducting circuit. Phys. Rev. Lett. 129, 160602 (2022).
  84. Bao, F. et al. Fluxonium: An alternative qubit platform for high-fidelity operations. Phys. Rev. Lett. 129, 010502 (2022).
  85. Rol, M. A. et al. Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor. Appl. Phys. Lett. (2019).
  86. Sung, Y. et al. Realization of high-fidelity cz and z⁢z𝑧𝑧zzitalic_z italic_z-free iswap gates with a tunable coupler. Phys. Rev. X 11, 021058 (2021).
  87. Foxen, B. et al. Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms. Phys. Rev. Lett. 125, 120504 (2020).
  88. Ren, W. et al. Experimental quantum adversarial learning with programmable superconducting qubits. Nature Computational Science 2, 711–717 (2022).
Citations (3)

Summary

We haven't generated a summary for this paper yet.