2000 character limit reached
Coloring problems on arrangements of pseudolines (2402.12564v1)
Published 19 Feb 2024 in math.CO, cs.CG, and cs.DM
Abstract: Arrangements of pseudolines are a widely studied generalization of line arrangements. They are defined as a finite family of infinite curves in the Euclidean plane, any two of which intersect at exactly one point. One can state various related coloring problems depending on the number $n$ of pseudolines. In this article, we show that $n$ colors are sufficient for coloring the crossings avoiding twice the same color on the boundary of any cell, or, alternatively, avoiding twice the same color along any pseudoline. We also study the problem of coloring the pseudolines avoiding monochromatic crossings.
- A note on coloring line arrangements. Electron. J. Combin., 21(2):Article Number 2.23, 2014. doi:10.37236/2660.
- Oriented matroids, volume 46 of Encycl. Math. Appl. Cambridge University Press, 2nd edition, 1999. doi:10.1017/CBO9780511586507.
- Coloring and guarding arrangements. Discrete Math. Theor. Comput. Sci., 15(3):139–154, 2013. URL: https://dmtcs.episciences.org/2072/pdf.
- Edge coloring of hypergraphs and a conjecture of Erdős, Faber, Lovász. Combinatorica, 8(3):293–295, 1988. doi:10.1007/BF02126801.
- Coloring circle arrangements: New 4-chromatic planar graphs. Eur. J. Comb., 2023. doi:10.1016/j.ejc.2023.103839.
- Adrian Dumitrescu. The Dirac–Goodman–Pollack conjecture. Discrete Comput. Geom., 2023. doi:10.1007/s00454-023-00487-z.
- Paul Erdős. On the combinatorial problems which I would most like to see solved. Combinatorica, 1:25–42, 1981. doi:10.1007/BF02579174.
- Pseudoline arrangements. In Csaba D. Tóth, Jacob E. Goodman, and Joseph O’Rourke, editors, Handbook of discrete and computational geometry, Discrete Math. Appl., chapter 5. CRC Press, Boca Raton, FL, 3rd revised and updated edition, 2017.
- Hamiltonicity and colorings of arrangement graphs. Discrete Appl. Math., 154(17):2470–2483, 2006. doi:10.1016/j.dam.2006.04.006.
- Sweeps, arrangements and signotopes. Discrete Appl. Math., 109(1-2):67–94, 2001. doi:10.1016/S0166-218X(00)00232-8.
- Coloring simple hypergraphs. J. Comb. Theory, Series B, 103(6):767–794, 2013. doi:https://doi.org/10.1016/j.jctb.2013.09.003.
- Proof of Grünbaum’s conjecture on the stretchability of certain arrangements of pseudolines. J. Comb. Theory, Ser. A, 29:385–390, 1980. doi:10.1016/0097-3165(80)90038-2.
- Branko Grünbaum. Arrangements and spreads, volume 10 of Reg. Conf. Ser. Math. Amer. Math. Soc., Providence, RI, 1972.
- Jeff Kahn. Asymptotically good list-colorings. J. Comb. Theory, Ser. A, 73(1):1–59, 1996. doi:10.1006/jcta.1996.0001.
- A proof of the Erdős-Faber-Lovász conjecture. Ann. Math. (2), 198(2):537–618, 2023. doi:10.4007/annals.2023.198.2.2.
- Graph and hypergraph colouring via nibble methods: A survey, 2021. arXiv:2106.13733.
- Jonathan Lenchner. Sylvester-Gallai Results and Other Contributions to Combinatorial and Computational Geometry. PhD thesis, Polytechnic University, 2008.
- Friedrich Levi. Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade. Berichte Leipzig 78, 256-267, 1926.
- Graph colouring and the probabilistic method, volume 23 of Algorithms and Combinatorics. Springer Berlin, 2002.
- Gerhard Ringel. Über Geraden in allgemeiner Lage. Elemente der Mathematik, 12:75–82, 1957. doi:10.5169/seals-19211.
- David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput., 3:103–128, 2007. doi:10.4086/toc.2007.v003a006.