Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impact of data for forecasting on performance of model predictive control in buildings with smart energy storage (2402.12539v2)

Published 19 Feb 2024 in eess.SY, cs.LG, and cs.SY

Abstract: Data is required to develop forecasting models for use in Model Predictive Control (MPC) schemes in building energy systems. However, data is costly to both collect and exploit. Determining cost optimal data usage strategies requires understanding of the forecast accuracy and resulting MPC operational performance it enables. This study investigates the performance of both simple and state-of-the-art machine learning prediction models for MPC in multi-building energy systems using a simulated case study with historic building energy data. The impact on forecast accuracy of measures to improve model data efficiency are quantified, specifically for: reuse of prediction models, reduction of training data duration, reduction of model data features, and online model training. A simple linear multi-layer perceptron model is shown to provide equivalent forecast accuracy to state-of-the-art models, with greater data efficiency and generalisability. The use of more than 2 years of training data for load prediction models provided no significant improvement in forecast accuracy. Forecast accuracy and data efficiency were improved simultaneously by using change-point analysis to screen training data. Reused models and those trained with 3 months of data had on average 10% higher error than baseline, indicating that deploying MPC systems without prior data collection may be economic.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. IEA, Tracking Clean Energy Progress 2023. URL https://www.iea.org/reports/tracking-clean-energy-progress-2023
  2. CCC, The Sixth Carbon Budget The UK’s path to Net Zero. URL https://www.theccc.org.uk/wp-content/uploads/2020/12/The-Sixth-Carbon-Budget-The-UKs-path-to-Net-Zero.pdf
  3. doi:10.1016/j.egyr.2022.10.322. URL https://www.sciencedirect.com/science/article/pii/S2352484722022570
  4. doi:10.2172/1820102. URL https://www.osti.gov/biblio/1820102
  5. doi:10.1016/j.jobe.2023.106735. URL https://www.sciencedirect.com/science/article/pii/S2352710223009142
  6. doi:10.1145/3408308.3427604. URL https://dl.acm.org/doi/10.1145/3408308.3427604
  7. doi:10.1016/j.apenergy.2018.09.046. URL https://www.sciencedirect.com/science/article/pii/S0306261918313552
  8. doi:10.1016/j.arcontrol.2020.09.001. URL https://www.sciencedirect.com/science/article/pii/S1367578820300584
  9. doi:10.1016/j.apenergy.2020.115036. URL https://www.sciencedirect.com/science/article/pii/S0306261920305481
  10. doi:10.1016/j.rser.2020.110120. URL https://www.sciencedirect.com/science/article/pii/S1364032120304111
  11. doi:10.1016/j.energy.2021.121134. URL https://www.sciencedirect.com/science/article/pii/S0360544221013827
  12. doi:10.1016/j.energy.2023.126934. URL https://www.sciencedirect.com/science/article/pii/S0360544223003286
  13. doi:10.1109/ISGTEurope.2018.8571459. URL https://ieeexplore.ieee.org/abstract/document/8571459
  14. doi:10.1016/j.jprocont.2014.04.015. URL https://www.sciencedirect.com/science/article/pii/S0959152414001164
  15. doi:10.1016/j.enbuild.2020.110291. URL https://www.sciencedirect.com/science/article/pii/S0378778820302875
  16. doi:10.1016/j.enbuild.2011.09.022. URL https://www.sciencedirect.com/science/article/pii/S0378778811004105
  17. doi:10.1051/e3sconf/202339604018. URL https://www.e3s-conferences.org/articles/e3sconf/abs/2023/33/e3sconf_iaqvec2023_04018/e3sconf_iaqvec2023_04018.html
  18. doi:10.3846/jcem.2022.17566. URL https://jau.vgtu.lt/index.php/JCEM/article/view/17566
  19. doi:10.1016/j.enbuild.2017.08.010. URL https://www.sciencedirect.com/science/article/pii/S0378778816320333
  20. doi:10.1016/j.scs.2021.103381. URL https://www.sciencedirect.com/science/article/pii/S2210670721006545
  21. doi:10.1016/j.enbuild.2020.110022. URL https://www.sciencedirect.com/science/article/pii/S0378778819339313
  22. doi:10.1016/j.apenergy.2021.116452. URL https://www.sciencedirect.com/science/article/pii/S0306261921000209
  23. doi:10.1016/j.energy.2018.09.144. URL https://www.sciencedirect.com/science/article/pii/S0360544218319145
  24. doi:10.1145/3600100.3626277. URL https://dl.acm.org/doi/10.1145/3600100.3626277
  25. doi:10.1016/j.apenergy.2017.12.051. URL https://www.sciencedirect.com/science/article/pii/S0306261917317658
  26. doi:10.1016/j.apenergy.2018.12.004. URL https://www.sciencedirect.com/science/article/pii/S0306261918318221
  27. doi:10.1016/j.enbuild.2023.113027. URL https://www.sciencedirect.com/science/article/pii/S0378778823002578
  28. arXiv:2312.02375. URL http://arxiv.org/abs/2312.02375
  29. doi:10.1609/aaai.v37i9.26317. URL https://ojs.aaai.org/index.php/AAAI/article/view/26317
  30. doi:10.1016/j.apenergy.2021.118491. URL https://www.sciencedirect.com/science/article/pii/S0306261921017098
  31. doi:10.26868/25222708.2021.30346. URL https://publications.ibpsa.org/conference/paper/?id=bs2021_30346
  32. doi:10.1016/j.rser.2021.110835. URL https://www.sciencedirect.com/science/article/pii/S1364032121001295
  33. doi:10.1016/j.energy.2019.01.104. URL https://www.sciencedirect.com/science/article/pii/S0360544219301045
  34. doi:10.1016/j.egypro.2016.06.271. URL https://www.sciencedirect.com/science/article/pii/S187661021630371X
  35. doi:10.1016/j.energy.2022.125703. URL https://www.sciencedirect.com/science/article/pii/S0360544222025890
  36. doi:10.1016/j.rser.2023.113496. URL https://www.sciencedirect.com/science/article/pii/S1364032123003532
  37. doi:10.1016/j.buildenv.2023.110595. URL https://www.sciencedirect.com/science/article/pii/S0360132323006224
  38. doi:10.1016/j.apenergy.2022.119580. URL https://www.sciencedirect.com/science/article/pii/S0306261922008881
  39. doi:10.1145/3563357.3564077. URL https://dl.acm.org/doi/10.1145/3563357.3564077
  40. doi:10.1145/3360322.3360998. URL https://dl.acm.org/doi/10.1145/3360322.3360998
  41. arXiv:2012.10504, doi:10.48550/arXiv.2012.10504. URL http://arxiv.org/abs/2012.10504
  42. doi:10.5285/6180FB7ED76A442EB1B8F3F152FD08D7. URL https://catalogue.ceda.ac.uk/uuid/6180fb7ed76a442eb1b8f3f152fd08d7
  43. doi:10.1016/j.energy.2016.08.060. URL https://www.sciencedirect.com/science/article/pii/S0360544216311744
  44. doi:10.1016/j.energy.2016.08.068. URL https://www.sciencedirect.com/science/article/pii/S0360544216311811
  45. Energy Stats UK, Historical pricing data – octopus agile eastern england. URL https://energy-stats.uk/download-historical-pricing-data/
  46. National Grid ESO, Historic generation mix & carbon intensity. URL https://data.nationalgrideso.com/carbon-intensity1/historic-generation-mix
  47. doi:10.1016/j.ijforecast.2021.03.012. URL https://www.sciencedirect.com/science/article/pii/S0169207021000637
  48. doi:10.1609/aaai.v37i6.25854. URL https://ojs.aaai.org/index.php/AAAI/article/view/25854
  49. doi:10.1016/j.ijforecast.2019.07.001. URL https://www.sciencedirect.com/science/article/pii/S0169207019301888
  50. doi:10.1016/j.rse.2019.04.034. URL https://www.sciencedirect.com/science/article/pii/S0034425719301853
  51. D. M. Hawkins, The Problem of Overfitting 44 (1) 1–12. doi:10.1021/ci0342472. URL https://doi.org/10.1021/ci0342472
  52. arXiv:1937887, doi:10.2307/1937887. URL https://www.jstor.org/stable/1937887
  53. doi:10.1007/11494669_93.
  54. doi:10.5281/zenodo.3828935. URL https://github.com/Lightning-AI/lightning
  55. arXiv:1412.6980, doi:10.48550/arXiv.1412.6980. URL http://arxiv.org/abs/1412.6980
  56. J. Beitner, Jdb78/pytorch-forecasting. URL https://github.com/jdb78/pytorch-forecasting
  57. R. Ward, A data-centric stochastic model for simulation of occupant-related energy demand in buildings. URL https://www.repository.cam.ac.uk/handle/1810/328479
  58. J. Feydy, Jeanfeydy/geomloss. URL https://github.com/jeanfeydy/geomloss
Citations (5)

Summary

We haven't generated a summary for this paper yet.