Impact of data for forecasting on performance of model predictive control in buildings with smart energy storage (2402.12539v2)
Abstract: Data is required to develop forecasting models for use in Model Predictive Control (MPC) schemes in building energy systems. However, data is costly to both collect and exploit. Determining cost optimal data usage strategies requires understanding of the forecast accuracy and resulting MPC operational performance it enables. This study investigates the performance of both simple and state-of-the-art machine learning prediction models for MPC in multi-building energy systems using a simulated case study with historic building energy data. The impact on forecast accuracy of measures to improve model data efficiency are quantified, specifically for: reuse of prediction models, reduction of training data duration, reduction of model data features, and online model training. A simple linear multi-layer perceptron model is shown to provide equivalent forecast accuracy to state-of-the-art models, with greater data efficiency and generalisability. The use of more than 2 years of training data for load prediction models provided no significant improvement in forecast accuracy. Forecast accuracy and data efficiency were improved simultaneously by using change-point analysis to screen training data. Reused models and those trained with 3 months of data had on average 10% higher error than baseline, indicating that deploying MPC systems without prior data collection may be economic.
- IEA, Tracking Clean Energy Progress 2023. URL https://www.iea.org/reports/tracking-clean-energy-progress-2023
- CCC, The Sixth Carbon Budget The UK’s path to Net Zero. URL https://www.theccc.org.uk/wp-content/uploads/2020/12/The-Sixth-Carbon-Budget-The-UKs-path-to-Net-Zero.pdf
- doi:10.1016/j.egyr.2022.10.322. URL https://www.sciencedirect.com/science/article/pii/S2352484722022570
- doi:10.2172/1820102. URL https://www.osti.gov/biblio/1820102
- doi:10.1016/j.jobe.2023.106735. URL https://www.sciencedirect.com/science/article/pii/S2352710223009142
- doi:10.1145/3408308.3427604. URL https://dl.acm.org/doi/10.1145/3408308.3427604
- doi:10.1016/j.apenergy.2018.09.046. URL https://www.sciencedirect.com/science/article/pii/S0306261918313552
- doi:10.1016/j.arcontrol.2020.09.001. URL https://www.sciencedirect.com/science/article/pii/S1367578820300584
- doi:10.1016/j.apenergy.2020.115036. URL https://www.sciencedirect.com/science/article/pii/S0306261920305481
- doi:10.1016/j.rser.2020.110120. URL https://www.sciencedirect.com/science/article/pii/S1364032120304111
- doi:10.1016/j.energy.2021.121134. URL https://www.sciencedirect.com/science/article/pii/S0360544221013827
- doi:10.1016/j.energy.2023.126934. URL https://www.sciencedirect.com/science/article/pii/S0360544223003286
- doi:10.1109/ISGTEurope.2018.8571459. URL https://ieeexplore.ieee.org/abstract/document/8571459
- doi:10.1016/j.jprocont.2014.04.015. URL https://www.sciencedirect.com/science/article/pii/S0959152414001164
- doi:10.1016/j.enbuild.2020.110291. URL https://www.sciencedirect.com/science/article/pii/S0378778820302875
- doi:10.1016/j.enbuild.2011.09.022. URL https://www.sciencedirect.com/science/article/pii/S0378778811004105
- doi:10.1051/e3sconf/202339604018. URL https://www.e3s-conferences.org/articles/e3sconf/abs/2023/33/e3sconf_iaqvec2023_04018/e3sconf_iaqvec2023_04018.html
- doi:10.3846/jcem.2022.17566. URL https://jau.vgtu.lt/index.php/JCEM/article/view/17566
- doi:10.1016/j.enbuild.2017.08.010. URL https://www.sciencedirect.com/science/article/pii/S0378778816320333
- doi:10.1016/j.scs.2021.103381. URL https://www.sciencedirect.com/science/article/pii/S2210670721006545
- doi:10.1016/j.enbuild.2020.110022. URL https://www.sciencedirect.com/science/article/pii/S0378778819339313
- doi:10.1016/j.apenergy.2021.116452. URL https://www.sciencedirect.com/science/article/pii/S0306261921000209
- doi:10.1016/j.energy.2018.09.144. URL https://www.sciencedirect.com/science/article/pii/S0360544218319145
- doi:10.1145/3600100.3626277. URL https://dl.acm.org/doi/10.1145/3600100.3626277
- doi:10.1016/j.apenergy.2017.12.051. URL https://www.sciencedirect.com/science/article/pii/S0306261917317658
- doi:10.1016/j.apenergy.2018.12.004. URL https://www.sciencedirect.com/science/article/pii/S0306261918318221
- doi:10.1016/j.enbuild.2023.113027. URL https://www.sciencedirect.com/science/article/pii/S0378778823002578
- arXiv:2312.02375. URL http://arxiv.org/abs/2312.02375
- doi:10.1609/aaai.v37i9.26317. URL https://ojs.aaai.org/index.php/AAAI/article/view/26317
- doi:10.1016/j.apenergy.2021.118491. URL https://www.sciencedirect.com/science/article/pii/S0306261921017098
- doi:10.26868/25222708.2021.30346. URL https://publications.ibpsa.org/conference/paper/?id=bs2021_30346
- doi:10.1016/j.rser.2021.110835. URL https://www.sciencedirect.com/science/article/pii/S1364032121001295
- doi:10.1016/j.energy.2019.01.104. URL https://www.sciencedirect.com/science/article/pii/S0360544219301045
- doi:10.1016/j.egypro.2016.06.271. URL https://www.sciencedirect.com/science/article/pii/S187661021630371X
- doi:10.1016/j.energy.2022.125703. URL https://www.sciencedirect.com/science/article/pii/S0360544222025890
- doi:10.1016/j.rser.2023.113496. URL https://www.sciencedirect.com/science/article/pii/S1364032123003532
- doi:10.1016/j.buildenv.2023.110595. URL https://www.sciencedirect.com/science/article/pii/S0360132323006224
- doi:10.1016/j.apenergy.2022.119580. URL https://www.sciencedirect.com/science/article/pii/S0306261922008881
- doi:10.1145/3563357.3564077. URL https://dl.acm.org/doi/10.1145/3563357.3564077
- doi:10.1145/3360322.3360998. URL https://dl.acm.org/doi/10.1145/3360322.3360998
- arXiv:2012.10504, doi:10.48550/arXiv.2012.10504. URL http://arxiv.org/abs/2012.10504
- doi:10.5285/6180FB7ED76A442EB1B8F3F152FD08D7. URL https://catalogue.ceda.ac.uk/uuid/6180fb7ed76a442eb1b8f3f152fd08d7
- doi:10.1016/j.energy.2016.08.060. URL https://www.sciencedirect.com/science/article/pii/S0360544216311744
- doi:10.1016/j.energy.2016.08.068. URL https://www.sciencedirect.com/science/article/pii/S0360544216311811
- Energy Stats UK, Historical pricing data – octopus agile eastern england. URL https://energy-stats.uk/download-historical-pricing-data/
- National Grid ESO, Historic generation mix & carbon intensity. URL https://data.nationalgrideso.com/carbon-intensity1/historic-generation-mix
- doi:10.1016/j.ijforecast.2021.03.012. URL https://www.sciencedirect.com/science/article/pii/S0169207021000637
- doi:10.1609/aaai.v37i6.25854. URL https://ojs.aaai.org/index.php/AAAI/article/view/25854
- doi:10.1016/j.ijforecast.2019.07.001. URL https://www.sciencedirect.com/science/article/pii/S0169207019301888
- doi:10.1016/j.rse.2019.04.034. URL https://www.sciencedirect.com/science/article/pii/S0034425719301853
- D. M. Hawkins, The Problem of Overfitting 44 (1) 1–12. doi:10.1021/ci0342472. URL https://doi.org/10.1021/ci0342472
- arXiv:1937887, doi:10.2307/1937887. URL https://www.jstor.org/stable/1937887
- doi:10.1007/11494669_93.
- doi:10.5281/zenodo.3828935. URL https://github.com/Lightning-AI/lightning
- arXiv:1412.6980, doi:10.48550/arXiv.1412.6980. URL http://arxiv.org/abs/1412.6980
- J. Beitner, Jdb78/pytorch-forecasting. URL https://github.com/jdb78/pytorch-forecasting
- R. Ward, A data-centric stochastic model for simulation of occupant-related energy demand in buildings. URL https://www.repository.cam.ac.uk/handle/1810/328479
- J. Feydy, Jeanfeydy/geomloss. URL https://github.com/jeanfeydy/geomloss