Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Shortcut to Adiabaticity for State Preparation in a Finite-Sized Jaynes-Cummings Lattice (2402.12485v2)

Published 19 Feb 2024 in quant-ph and cond-mat.mes-hall

Abstract: In noisy quantum systems, achieving high-fidelity state preparation using the adiabatic approach faces a dilemma: either extending the evolution time to reduce diabatic transitions or shortening it to mitigate decoherence effects. Here, we present a quantum shortcut to adiabaticity for state preparation in a finite-sized Jaynes-Cummings lattice by applying counter-diabatic (CD) driving along given adiabatic trajectories. Leveraging the symmetry of eigenstates in our system, we convert the CD driving to an implementable Hamiltonian that only involves local qubit-cavity couplings for a two-site lattice with one polariton excitation. Additionally, we derive a partial analytical form of the CD driving for the lattice with two excitations. Our numerical results demonstrate that circuit errors and environmental noise have negligible effects on our scheme under practical parameters. We also show that our scheme can be characterized through the detection of qubit operators. This approach can lead to a promising pathway to high-fidelity state preparation in a significantly reduced timescale when compared to conventional adiabatic methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. Adiabatic quantum computation, Rev. Mod. Phys. 90, 015002 (2018).
  2. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science 292, 472 (2001).
  3. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  4. Noisy intermediate-scale quantum algorithms, Rev. Mod. Phys. 94, 015004 (2022).
  5. Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91, 045001 (2019).
  6. Geometry and non-adiabatic response in quantum and classical systems, Phys. Rep. 697, 1 (2017).
  7. M. V. Berry, Transitionless quantum driving, J. Phys. A: Math. Theor., 42, 365303 (2009).
  8. On the consistency, extremal, and global properties of counterdiabatic fields, J. Chem. Phys. 129, 154111 (2008).
  9. Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105, 123003 (2010).
  10. A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111, 100502 (2013).
  11. B. Damski, Counterdiabatic driving of the quantum ising model, J. Stat. Mech.: Theory Exp. 2014(12), P12019 (2014).
  12. Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity, Phys. Rev. Lett. 104, 063002 (2010).
  13. Inverse engineering control in open quantum systems, Phys. Rev. A 88, 053422 (2013).
  14. Simple pulses for elimination of leakage in weakly nonlinear qubits, Phys. Rev. Lett. 103, 110501 (2009).
  15. Speeding up adiabatic quantum state transfer by using dressed states, Phys. Rev. Lett. 116, 230503 (2016).
  16. The experimental realization of high-fidelity ‘shortcut-to-adiabaticity’ quantum gates in a superconducting xmon qubit, New J. Phys. 20, 065003 (2018).
  17. Optimal superadiabatic population transfer and gates by dynamical phase corrections, Quantum Sci. and Technol. 3, 024006 (2018).
  18. Simultaneous gates in frequency-crowded multilevel systems using fast, robust, analytic control shapes, Phys. Rev. A 93, 012324 (2016).
  19. Fast adiabatic qubit gates using only σzsubscript𝜎𝑧{\sigma}_{z}italic_σ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT control, Phys. Rev. A 90, 022307 (2014).
  20. Experimental realization of nonadiabatic shortcut to non-abelian geometric gates, Phys. Rev. Lett. 122, 080501 (2019).
  21. Proposal for implementing universal superadiabatic geometric quantum gates in nitrogen-vacancy centers, Phys. Rev. A 93, 040305(R) (2016).
  22. Experimental realization of stimulated raman shortcut-to-adiabatic passage with cold atoms, Nat. Commun. 7, 12479 (2016).
  23. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system, Nat. Phys. 13, 330 (2017).
  24. Spin-selective electron transfer in a quantum dot array, Phys. Rev. B 97, 045418 (2018).
  25. High-fidelity quantum driving, Nat. Phys. 8, 147 (2012).
  26. T. Hatomura, Shortcuts to adiabatic cat-state generation in bosonic Josephson junctions, New J. Phys. 20, 015010 (2018).
  27. Maximizing entanglement in bosonic josephson junctions using shortcuts to adiabaticity and optimal control. New J. Phys. 20, 055009 (2018).
  28. Fast non-abelian geometric gates via transitionless quantum driving, Sci. Rep. 5, 18414 (2015).
  29. Assisted finite-rate adiabatic passage across a quantum critical point: Exact solution for the quantum ising model, Phys. Rev. Lett. 109, 115703 (2012).
  30. Minimizing irreversible losses in quantum systems by local counterdiabatic driving, Proc. Natl. Acad. Sci. 114, E3909 (2017).
  31. K. Takahashi, Shortcuts to adiabaticity for quantum annealing, Phys. Rev. A 95, 012309 (2017).
  32. Digitized counterdiabatic quantum optimization, Phys. Rev. Res. 4, L042030 (2022).
  33. Partial suppression of nonadiabatic transitions, New J. Phys. 16, 015025 (2014).
  34. Strongly interacting polaritons in coupled arrays of cavities, Nat. Phys. 2, 849 (2006).
  35. Quantum phase transitions of light, Nat. Phys. 2, 856 (2006).
  36. Photon-blockade-induced mott transitions and x⁢y𝑥𝑦xyitalic_x italic_y spin models in coupled cavity arrays, Phys. Rev. A 76, 031805(R) (2007).
  37. Mott-insulating and glassy phases of polaritons in 1d arrays of coupled cavities, Phys. Rev. Lett. 99, 186401 (2007).
  38. Strongly correlated polaritons in a two-dimensional array of photonic crystal microcavities, Phys. Rev. A 77, 031803(R) (2008).
  39. Superfluid–mott-insulator transition of light in the jaynes-cummings lattice, Phys. Rev. A 80, 023811 (2009).
  40. Quantum phase transition in a multiconnected superconducting jaynes-cummings lattice, Phys. Rev. B 91, 195439 (2015).
  41. Quantum phase transition in a multiconnected jaynes-cummings lattice, Phys. Rev. B 96, 174502 (2017).
  42. C. Noh and D. G. Angelakis, Quantum simulations and many-body physics with light, Rep. Prog. Phys. 80, 016401 (2016).
  43. On-chip quantum simulation with superconducting circuits, Nat. Phys. 8, 292 (2012).
  44. Dispersive photon blockade in a superconducting circuit, Phys. Rev. Lett. 107, 053602 (2011).
  45. Spin-orbit coupling for photons and polaritons in microstructures, Phys. Rev. X 5, 011034 (2015).
  46. Arrays of waveguide-coupled optical cavities that interact strongly with atoms, New J. Phys. 13, 113002 (2011).
  47. Simulation of a quantum phase transition of polaritons with trapped ions, Phys. Rev. A 80, 060301(R) (2009).
  48. Experimental realization of a quantum phase transition of polaritonic excitations, Phys. Rev. Lett. 111, 160501 (2013).
  49. Observation of hopping and blockade of bosons in a trapped ion spin chain, Phys. Rev. Lett. 120, 073001 (2018).
  50. Observation of non-markovian spin dynamics in a Jaynes-Cummings-Hubbard model using a trapped-ion quantum simulator, Phys. Rev. Lett. 129, 140501 (2022).
  51. Observation of a dissipative phase transition in a one-dimensional circuit qed lattice, Phys. Rev. X 7, 011016 (2017).
  52. Nonequilibrium dynamics of coupled qubit-cavity arrays, Phys. Rev. Lett. 108, 233603 (2012).
  53. The Jaynes-Cummings Model and Its Descendants: Modern research directions, Part of IOP Series in Quantum Technology (2021), see also arXiv:2202.00330.
  54. Deterministic generation of entangled photons in superconducting resonator arrays, Phys. Rev. Lett. 106, 257002 (2011).
  55. Robust preparation of many-body ground states in Jaynes-Cummings lattices, Npj Quantum Inf. 7, 96 (2021).
  56. State preparation in a jaynes-cummings lattice with quantum optimal control, Sci. Rep. 13, 19924 (2023).
  57. A quantum engineer’s guide to superconducting qubits, Appl. Phys. Rev. 6, 021318 (2019).
  58. Circuit quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021).
  59. Hardware-efficient microwave-activated tunable coupling between superconducting qubits, Phys. Rev. Lett. 127, 200502 (2021).
  60. Modular tunable coupler for superconducting circuits, Phys. Rev. Appl. 19, 064043 (2023).
  61. Qubit architecture with high coherence and fast tunable coupling, Phys. Rev. Lett. 113, 220502 (2014).
  62. Tunable coupling scheme for implementing high-fidelity two-qubit gates, Phys. Rev. Appl. 10, 054062 (2018).
  63. Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92, 203501 (2008).

Summary

We haven't generated a summary for this paper yet.