Exploring the UV and IR of a type-II holographic superconductor using a dyonic black hole (2402.12476v1)
Abstract: In this study, we investigate a type-II holographic superconductor with a perturbative scalar field over a (3 + 1)-dimensional electric and magnetically charged planar AdS black hole. After consistently decoupling the scalar field sector from the complete Einstein-Maxwell-Scalar system, we delve into the thermodynamical properties of the background relevant for the dual description of the Ginzburg-Landau density of superconducting states. The adoption of a London gauge allowed us to consider the magnetic field as a uniform external field over which the holographic superconductor is subject. This consideration enables a consistent description of the appearance of Abrikosov vortex lattices typical in type-II superconductors. Thus, by matching near horizon and boundary expansions of the scalar field, we obtained an expression for the upper critical magnetic field as a function of temperature in both, the canonical and grand canonical ensemble. These novel results confirm that our perturbative scalar field model consistently reproduces the well-known temperature behavior of the upper critical magnetic field according to the Ginzburg-Landau theory and other Abelian-Higgs holographic developments for type-II superconductors. In addition, a new analysis of the scalar field equation in terms of a Schr\"odinger potential led us to observe the existence of potential wells distributed along the holographic coordinate. We interpret these regions with a local minimum as those in which bound states can exist, dual to the Cooper pairs density. These results provide evidence for the existence of an IR order parameter near the extremality. In view of this, we performed a closer inspection of the IR effective scalar equation in which the geometry adopts a Schwarzschild AdS$_{2}\times \mathbb{R}{2}$ structure.
- A. A. Abrikosov, “On the Magnetic properties of superconductors of the second group,” Sov. Phys. JETP 5 (1957) 1174–1182.
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252, hep-th/9711200.
- S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78 (2008) 065034, 0801.2977.
- S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Building a Holographic Superconductor,” Phys. Rev. Lett. 101 (2008) 031601, 0803.3295.
- J. A. Herrera-Mendoza, D. F. Higuita-Borja, J. A. Méndez-Zavaleta, A. Herrera-Aguilar, and F. Pérez-Rodríguez, “Vortex structure deformation of rotating Lifshitz holographic superconductors,” Phys. Rev. D 106 (2022), no. 8, L081902, 2208.05988.
- E. Nakano and W.-Y. Wen, “Critical magnetic field in a holographic superconductor,” Phys. Rev. D 78 (2008) 046004, 0804.3180.
- T. Hertog, “Towards a Novel no-hair Theorem for Black Holes,” Phys. Rev. D 74 (2006) 084008, gr-qc/0608075.
- S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, “Holographic Superconductors,” JHEP 12 (2008) 015, 0810.1563.
- M. Montull, A. Pomarol, and P. J. Silva, “The Holographic Superconductor Vortex,” Phys. Rev. Lett. 103 (2009) 091601, 0906.2396.
- K. Maeda, M. Natsuume, and T. Okamura, “Vortex lattice for a holographic superconductor,” Phys. Rev. D 81 (2010) 026002, 0910.4475.
- T. Albash and C. V. Johnson, “Vortex and Droplet Engineering in Holographic Superconductors,” Phys. Rev. D 80 (2009) 126009, 0906.1795.
- A. Adams, P. M. Chesler, and H. Liu, “Holographic Vortex Liquids and Superfluid Turbulence,” Science 341 (2013) 368–372, 1212.0281.
- A. Srivastav and S. Gangopadhyay, “Vortices in a rotating holographic superfluid with Lifshitz scaling,” Phys. Rev. D 107 (2023), no. 8, 086005, 2302.01030.
- C.-Y. Xia, H.-B. Zeng, H.-Q. Zhang, Z.-Y. Nie, Y. Tian, and X. Li, “Vortex Lattice in a Rotating Holographic Superfluid,” Phys. Rev. D 100 (2019), no. 6, 061901, 1904.10925.
- L. J. Romans, “Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory,” Nucl. Phys. B 383 (1992) 395–415, hep-th/9203018.
- S. A. Hartnoll and P. Kovtun, “Hall conductivity from dyonic black holes,” Phys. Rev. D 76 (2007) 066001, 0704.1160.
- G. T. Horowitz and M. M. Roberts, “Zero Temperature Limit of Holographic Superconductors,” JHEP 11 (2009) 015, 0908.3677.
- T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, “Emergent quantum criticality, Fermi surfaces, and AdS(2),” Phys. Rev. D 83 (2011) 125002, 0907.2694.
- T. Albash and C. V. Johnson, “A Holographic Superconductor in an External Magnetic Field,” JHEP 09 (2008) 121, 0804.3466.
- A. Donos, J. P. Gauntlett, and C. Pantelidou, “Holographic Abrikosov Lattices,” JHEP 07 (2020) 095, 2001.11510.
- V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commun. Math. Phys. 208 (1999) 413–428, hep-th/9902121.
- W. Kim, S. Kulkarni, and S.-H. Yi, “Quasilocal Conserved Charges in a Covariant Theory of Gravity,” Phys. Rev. Lett. 111 (2013), no. 8, 081101, 1306.2138. [Erratum: Phys.Rev.Lett. 112, 079902 (2014)].
- Cambridge University Press, 2015.
- S. A. Hartnoll, G. T. Horowitz, J. Kruthoff, and J. E. Santos, “Diving into a holographic superconductor,” SciPost Phys. 10 (2021), no. 1, 009, 2008.12786.
- S. A. Hartnoll, A. Lucas, and S. Sachdev, “Holographic quantum matter,” 1612.07324.
- F. F. Santos, M. Bravo-Gaete, M. M. Ferreira, and R. Casana, “Magnetized AdS/BCFT Correspondence in Horndeski Gravity,” 2310.17092.
- R. Gregory, S. Kanno, and J. Soda, “Holographic Superconductors with Higher Curvature Corrections,” JHEP 10 (2009) 010, 0907.3203.
- Z. Zhao, Q. Pan, and J. Jing, “Notes on analytical study of holographic superconductors with Lifshitz scaling in external magnetic field,” Phys. Lett. B 735 (2014) 438–444, 1311.6260.
- T. Faulkner, G. T. Horowitz, and M. M. Roberts, “Holographic quantum criticality from multi-trace deformations,” JHEP 04 (2011) 051, 1008.1581.
- T. Faulkner, H. Liu, and M. Rangamani, “Integrating out geometry: Holographic Wilsonian RG and the membrane paradigm,” JHEP 08 (2011) 051, 1010.4036.
- N. Iqbal, H. Liu, M. Mezei, and Q. Si, “Quantum phase transitions in holographic models of magnetism and superconductors,” Phys. Rev. D 82 (2010) 045002, 1003.0010.
- A. Herrera-Aguilar, J. A. Herrera-Mendoza, and D. F. Higuita-Borja, “Rotating spacetimes generalizing Lifshitz black holes,” Eur. Phys. J. C 81 (2021), no. 10, 874, 2104.14514.