Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Averages with the Gaussian divisor: Weighted Inequalities and the Pointwise Ergodic Theorem (2402.12457v1)

Published 19 Feb 2024 in math.CA and math.FA

Abstract: We discuss the Pointwise Ergodic Theorem for the Gaussian divisor function $d(n)$, that is, for a measure preserving $\mathbb Z[i]$ action $T$, the limit $$\lim_{N\rightarrow \infty} \frac{1}{D(N)} \sum _{\mathscr{N} (n) \leq N} d(n) \,f(Tn x) $$ converges for every $f\in Lp$, where $\mathscr{N} (n) = n \bar{n}$, and $D(N) = \sum _{\mathscr{N} (n) \leq N} d(n) $, and $1<p\leq \infty$. To do so we study the averages $$ A_N f (x) = \frac{1}{D(N)} \sum _{\mathscr{N} (n) \leq N} d(n) \,f(x-n) ,$$ and obtain improving and weighted maximal inequalities for our operator, in the process.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com