Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-orthogonal Age-Optimal Information Dissemination in Vehicular Networks: A Meta Multi-Objective Reinforcement Learning Approach (2402.12260v1)

Published 15 Feb 2024 in cs.LG

Abstract: This paper considers minimizing the age-of-information (AoI) and transmit power consumption in a vehicular network, where a roadside unit (RSU) provides timely updates about a set of physical processes to vehicles. We consider non-orthogonal multi-modal information dissemination, which is based on superposed message transmission from RSU and successive interference cancellation (SIC) at vehicles. The formulated problem is a multi-objective mixed-integer nonlinear programming problem; thus, a Pareto-optimal front is very challenging to obtain. First, we leverage the weighted-sum approach to decompose the multi-objective problem into a set of multiple single-objective sub-problems corresponding to each predefined objective preference weight. Then, we develop a hybrid deep Q-network (DQN)-deep deterministic policy gradient (DDPG) model to solve each optimization sub-problem respective to predefined objective-preference weight. The DQN optimizes the decoding order, while the DDPG solves the continuous power allocation. The model needs to be retrained for each sub-problem. We then present a two-stage meta-multi-objective reinforcement learning solution to estimate the Pareto front with a few fine-tuning update steps without retraining the model for each sub-problem. Simulation results illustrate the efficacy of the proposed solutions compared to the existing benchmarks and that the meta-multi-objective reinforcement learning model estimates a high-quality Pareto frontier with reduced training time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.