Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A high-order, fully well-balanced, unconditionally positivity-preserving finite volume framework for flood simulations (2402.12248v1)

Published 19 Feb 2024 in math.NA, cs.NA, and physics.flu-dyn

Abstract: In this work, we present a high-order finite volume framework for the numerical simulation of shallow water flows. The method is designed to accurately capture complex dynamics inherent in shallow water systems, particularly suited for applications such as tsunami simulations. The arbitrarily high-order framework ensures precise representation of flow behaviors, crucial for simulating phenomena characterized by rapid changes and fine-scale features. Thanks to an {\it ad-hoc} reformulation in terms of production-destruction terms, the time integration ensures positivity preservation without any time-step restrictions, a vital attribute for physical consistency, especially in scenarios where negative water depth reconstructions could lead to unrealistic results. In order to introduce the preservation of general steady equilibria dictated by the underlying balance law, the high-order reconstruction and numerical flux are blended in a convex fashion with a well-balanced approximation, which is able to provide exact preservation of both static and moving equilibria. Through numerical experiments, we demonstrate the effectiveness and robustness of the proposed approach in capturing the intricate dynamics of shallow water flows, while preserving key physical properties essential for flood simulations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com