Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed Gaussian Flow for Diverse Trajectory Prediction (2402.12238v1)

Published 19 Feb 2024 in cs.CV

Abstract: Existing trajectory prediction studies intensively leverage generative models. Normalizing flow is one of the genres with the advantage of being invertible to derive the probability density of predicted trajectories. However, mapping from a standard Gaussian by a flow-based model hurts the capacity to capture complicated patterns of trajectories, ignoring the under-represented motion intentions in the training data. To solve the problem, we propose a flow-based model to transform a mixed Gaussian prior into the future trajectory manifold. The model shows a better capacity for generating diverse trajectory patterns. Also, by associating each sub-Gaussian with a certain subspace of trajectories, we can generate future trajectories with controllable motion intentions. In such a fashion, the flow-based model is not encouraged to simply seek the most likelihood of the intended manifold anymore but a family of controlled manifolds with explicit interpretability. Our proposed method is demonstrated to show state-of-the-art performance in the quantitative evaluation of sampling well-aligned trajectories in top-M generated candidates. We also demonstrate that it can generate diverse, controllable, and out-of-distribution trajectories. Code is available at https://github.com/mulplue/MGF.

Citations (2)

Summary

We haven't generated a summary for this paper yet.