Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Many-Stage Optimal Stabilized Runge-Kutta Methods for Hyperbolic Partial Differential Equations (2402.12140v4)

Published 19 Feb 2024 in math.NA, cs.NA, math-ph, math.CA, and math.MP

Abstract: A novel optimization procedure for the generation of stability polynomials of stabilized explicit Runge-Kutta methods is devised. Intended for semidiscretizations of hyperbolic partial differential equations, the herein developed approach allows the optimization of stability polynomials with more than hundred stages. A potential application of these high degree stability polynomials are problems with locally varying characteristic speeds as found in non-uniformly refined meshes and different wave speeds. To demonstrate the applicability of the stability polynomials we construct 2N storage many-stage Runge-Kutta methods that match their designed second order of accuracy when applied to a range of linear and nonlinear hyperbolic PDEs with smooth solutions. The methods are constructed to reduce the amplification of round off errors which becomes a significant concern for these many-stage methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com