Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thermodynamic Analysis of Algorithmic Cooling Protocols: Efficiency Metrics and Improved Designs (2402.11832v1)

Published 19 Feb 2024 in quant-ph

Abstract: Algorithmic cooling (AC) protocols have been predominantly studied for their cooling capabilities, with limited attention paid to their thermodynamic properties. This work explores a novel perspective by analyzing a broad family of AC protocols from a thermodynamic standpoint. First, we give an in-depth review and formal classification of standard AC protocols. Leveraging the transfer matrix formalism, we achieve a consistent calculation of performance metrics, encompassing both cooling limits and target state evolution. We obtained a unification of these diverse cooling limits into a single, coherent mathematical expression, streamlining comparative analyses. Then, to assess the efficiency of coherent cooling protocols, we introduce two generic metrics: the coefficient of performance $K$ and the Landauer Ratio $R_L$, and establish a direct interrelation. Applying these metrics, we thoroughly evaluate selected AC protocols, highlighting their relative strengths. Finally, we propose improved versions of AC protocols that exhibit enhanced thermodynamic performance, achieving desired target temperatures with lower work inputs. This research contributes to a deeper understanding of AC protocols and provides valuable insights for designing efficient cooling strategies in various applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. E. Knill, R. Laflamme, and L. Viola, Physical Review Letters 84, 2525 (2000).
  2. D. Gottesman, in Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, Vol. 68 (2010) pp. 13–58.
  3. F. Pobell, Matter and methods at low temperatures, Vol. 2 (Springer, 2007).
  4. P. Gumann and J. Chow, Quantum  (2023).
  5. Á. M. Alhambra, M. Lostaglio, and C. Perry, Quantum 3, 188 (2019).
  6. N. A. Rodríguez-Briones, PhD Thesis, University of Waterloo  (2020).
  7. L. B. Oftelie, A. De Pasquale, and M. Campisi, arXiv preprint arXiv:2401.09134  (2024).
  8. O. W. Sørensen, Progress in Nuclear Magnetic Resonance Spectroscopy 21, 503 (1989).
  9. O. W. Sørensen, Journal of Magnetic Resonance (1969) 86, 435 (1990).
  10. O. W. Sørensen, Journal of Magnetic Resonance (1969) 93, 648 (1991).
  11. L. J. Schulman and U. Vazirani, Scalable NMR Quantum Computation (1998), arXiv:9804060 [quant-ph] .
  12. L. J. Schulman, T. Mor, and Y. Weinstein, SIAM Journal on Computing 36, 1729 (2007).
  13. N. A. Rodríguez-Briones and R. Laflamme, Physical Review Letters 116, 170501 (2016).
  14. M. Hotta, Physical Review A 80, 042323 (2009).
  15. M. R. Frey, K. Gerlach, and M. Hotta, Journal of Physics A: Mathematical and Theoretical 46, 455304 (2013).
  16. M. Hotta, Physics Letters A 372, 5671 (2008).
  17. M. Lostaglio, Á. M. Alhambra, and C. Perry, Quantum 2, 52 (2018), arXiv:1607.00394v3 .
  18. I. Schur, Sitzungsberichte der Berliner Mathematischen Gesellschaft 22, 51 (1923).
  19. A. Horn, American Journal of Mathematics 76, 620 (1954).
  20. J. Anders and V. Giovannetti, New Journal of Physics 15, 033022 (2013).
  21. R. Landauer, IBM Journal of Research and Development 5, 183 (1961).
  22. D. Reeb and M. M. Wolf, New Journal of Physics 16, 103011 (2014).
  23. E. Witten, La Rivista del Nuovo Cimento 43, 187 (2020).
  24. K. M. R. Audenaert and J. Eisert, Journal of Mathematical Physics 46, 102104 (2005).
  25. M. Fannes, Communications in Mathematical Physics 31, 291 (1973).
  26. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2012).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com