Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HU at SemEval-2024 Task 8A: Can Contrastive Learning Learn Embeddings to Detect Machine-Generated Text? (2402.11815v2)

Published 19 Feb 2024 in cs.CL, cs.AI, and cs.LG

Abstract: This paper describes our system developed for SemEval-2024 Task 8, ``Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection'' Machine-generated texts have been one of the main concerns due to the use of LLMs (LLM) in fake text generation, phishing, cheating in exams, or even plagiarizing copyright materials. A lot of systems have been developed to detect machine-generated text. Nonetheless, the majority of these systems rely on the text-generating model. This limitation is impractical in real-world scenarios, as it's often impossible to know which specific model the user has used for text generation. In this work, we propose a $\textbf{single}$ model based on contrastive learning, which uses $\textbf{$\approx$40% of the baseline's parameters}$ (149M vs. 355M) but shows a comparable performance on the test dataset $(\textbf{21st out of 137 participants})$. Our key finding is that even without an ensemble of multiple models, a single base model can have comparable performance with the help of data augmentation and contrastive learning. Our code is publicly available at https://github.com/dipta007/SemEval24-Task8.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shubhashis Roy Dipta (5 papers)
  2. Sadat Shahriar (8 papers)
Citations (1)