Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A 4-8 GHz Kinetic Inductance Travelling-Wave Parametric Amplifier Using Four-Wave Mixing with Near Quantum-Limit Noise Performance (2402.11751v4)

Published 19 Feb 2024 in quant-ph and astro-ph.IM

Abstract: Kinetic inductance traveling-wave parametric amplifiers (KI-TWPA) have a wide instantaneous bandwidth with near quantum-limited performance and a relatively high dynamic range. Because of this, they are suitable readout devices for cryogenic detectors and superconducting qubits and have a variety of applications in quantum sensing. This work discusses the design, fabrication, and performance of a KI-TWPA based on four-wave mixing in a NbTiN microstrip transmission line. This device amplifies a signal band from 4 to 8~GHz without contamination from image tones, which are produced in a separate higher frequency band. The 4 - 8~GHz band is commonly used to read out cryogenic detectors, such as microwave kinetic inductance detectors (MKIDs) and Josephson junction-based qubits. We report a measured maximum gain of over 20 dB using four-wave mixing with a 1-dB gain compression point of -58 dBm at 15 dB of gain over that band. The bandwidth and peak gain are tunable by adjusting the pump-tone frequency and power. Using a Y-factor method, we measure an amplifier-added noise of $ 0.5 \leq N_{added} \leq 1.5$ photons from 4.5 - 8 GHz.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. N. Zobrist, B. H. Eom, P. Day, B. A. Mazin, S. R. Meeker, B. Bumble, H. G. LeDuc, G. Coiffard, P. Szypryt, N. Fruitwala, I. Lipartito,  and C. Bockstiegel, “Wide-band parametric amplifier readout and resolution of optical microwave kinetic inductance detectors,” Applied Physics Letters 115, 042601 (2019), https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.5098469/14525680/042601_1_online.pdf .
  2. S. Kempf, M. Wegner, A. Fleischmann, L. Gastaldo, F. Herrmann, M. Papst, D. Richter,  and C. Enss, “Demonstration of a scalable frequency-domain readout of metallic magnetic calorimeters by means of a microwave SQUID multiplexer,” AIP Advances 7, 015007 (2017), https://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/1.4973872/12927237/015007_1_online.pdf .
  3. M. Malnou, J. A. B. Mates, M. R. Vissers, L. R. Vale, D. R. Schmidt, D. A. Bennett, J. Gao,  and J. N. Ullom, “Improved microwave SQUID multiplexer readout using a kinetic-inductance traveling-wave parametric amplifier,” Applied Physics Letters 122, 214001 (2023a), https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0149646/17832018/214001_1_5.0149646.pdf .
  4. K. Peng, M. Naghiloo, J. Wang, G. D. Cunningham, Y. Ye,  and K. P. O’Brien, “Floquet-mode traveling-wave parametric amplifiers,” PRX Quantum 3 (2022), 10.1103/prxquantum.3.020306.
  5. S. Barzanjeh, D. P. DiVincenzo,  and B. M. Terhal, “Dispersive qubit measurement by interferometry with parametric amplifiers,” Physical Review B 90 (2014), 10.1103/physrevb.90.134515.
  6. N. Didier, A. Kamal, W. D. Oliver, A. Blais,  and A. A. Clerk, “Heisenberg-limited qubit read-out with two-mode squeezed light,” Physical Review Letters 115 (2015), 10.1103/physrevlett.115.093604.
  7. K. Ramanathan, N. Klimovich, R. Basu Thakur, B. H. Eom, H. G. Leduc, S. Shu, A. D. Beyer,  and P. K. Day, “Wideband direct detection constraints on hidden photon dark matter with the qualiphide experiment,” Phys. Rev. Lett. 130, 231001 (2023).
  8. J. Aumentado, “Superconducting parametric amplifiers: The state of the art in josephson parametric amplifiers,” IEEE Microwave Magazine 21, 45–59 (2020).
  9. M. Esposito, A. Ranadive, L. Planat,  and N. Roch, “Perspective on traveling wave microwave parametric amplifiers,” Applied Physics Letters 119 (2021), 10.1063/5.0064892.
  10. J. Mutus, T. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, et al., “Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line,” Applied Physics Letters 103 (2013).
  11. C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz, V. Bolkhovsky, X. Zhang, W. D. Oliver,  and I. Siddiqi, “A near–quantum-limited josephson traveling-wave parametric amplifier,” Science 350, 307–310 (2015), https://www.science.org/doi/pdf/10.1126/science.aaa8525 .
  12. S. Shu, N. Klimovich, B. H. Eom, A. D. Beyer, R. B. Thakur, H. G. Leduc,  and P. K. Day, “Nonlinearity and wide-band parametric amplification in a (nb,ti)n microstrip transmission line,” Physical Review Research 3 (2021), 10.1103/physrevresearch.3.023184.
  13. M. Malnou, M. Vissers, J. Wheeler, J. Aumentado, J. Hubmayr, J. Ullom,  and J. Gao, “Three-wave mixing kinetic inductance traveling-wave amplifier with near-quantum-limited noise performance,” PRX Quantum 2, 010302 (2021).
  14. B. Eom, P. K. Day, H. G. LeDuc,  and J. Zmuidzinas, “A wideband, low-noise superconducting amplifier with high dynamic range,” Nature Physics 8, 623–627 (2012).
  15. L. Ranzani, M. Bal, K. C. Fong, G. Ribeill, X. Wu, J. Long, H.-S. Ku, R. P. Erickson, D. Pappas,  and T. A. Ohki, “Kinetic inductance traveling-wave amplifiers for multiplexed qubit readout,” Applied Physics Letters 113, 242602 (2018), https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.5063252/14520906/242602_1_online.pdf .
  16. M. R. Vissers, R. P. Erickson, H.-S. Ku, L. Vale, X. Wu, G. C. Hilton,  and D. P. Pappas, “Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing,” Applied Physics Letters 108, 012601 (2016), https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.4937922/12854602/012601_1_online.pdf .
  17. S. Chaudhuri, D. Li, K. D. Irwin, C. Bockstiegel, J. Hubmayr, J. N. Ullom, M. R. Vissers,  and J. Gao, “Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines,” Applied Physics Letters 110, 152601 (2017), https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/1.4980102/14495669/152601_1_online.pdf .
  18. W. Shan, Y. Sekimoto,  and T. Noguchi, “Parametric amplification in a superconducting microstrip transmission line,” IEEE Transactions on Applied Superconductivity 26, 1–9 (2016).
  19. “Development of a broadband nbtin traveling wave parametric amplifier for mkid readout,”  (2014).
  20. N. S. Klimovich, Traveling wave parametric amplifiers and other nonlinear kinetic inductance devices, Ph.D. thesis (2022).
  21. A. Kerr and M. J. Feldman, “Mma memo 161 receiver noise temperature, the quantum noise limit, and the role of the zero-point fluctuations *,”  (1996).
  22. M. Malnou, T. F. Q. Larson, J. D. Teufel, F. Lecocq,  and J. Aumentado, “Low-noise cryogenic microwave amplifier characterization with a calibrated noise source,”  (2023b), arXiv:2312.14900 [quant-ph] .
Citations (1)

Summary

We haven't generated a summary for this paper yet.