Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MORL-Prompt: An Empirical Analysis of Multi-Objective Reinforcement Learning for Discrete Prompt Optimization (2402.11711v2)

Published 18 Feb 2024 in cs.CL

Abstract: RL-based techniques can be employed to search for prompts that, when fed into a target LLM, maximize a set of user-specified reward functions. However, in many target applications, the natural reward functions are in tension with one another -- for example, content preservation vs. style matching in style transfer tasks. Current techniques focus on maximizing the average of reward functions, which does not necessarily lead to prompts that achieve balance across rewards -- an issue that has been well-studied in the multi-objective and robust optimization literature. In this paper, we conduct an empirical comparison of several existing multi-objective optimization techniques adapted to this new setting: RL-based discrete prompt optimization. We compare two methods optimizing the volume of the Pareto reward surface and one method that chooses an update direction that benefits all rewards simultaneously. We evaluate performance on two NLP tasks: style transfer and machine translation, each using three competing reward functions. Our experiments demonstrate that multi-objective methods that directly optimize the volume of the Pareto reward surface perform better and achieve a better balance of all rewards than those that attempt to find monotonic update directions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.