Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explaining the Machine Learning Solution of the Ising Model (2402.11701v2)

Published 18 Feb 2024 in cond-mat.dis-nn, cs.LG, and physics.comp-ph

Abstract: As powerful as ML techniques are in solving problems involving data with large dimensionality, explaining the results from the fitted parameters remains a challenging task of utmost importance, especially in physics applications. This work shows how this can be accomplished for the ferromagnetic Ising model, the main target of several ML studies in statistical physics. Here it is demonstrated that the successful unsupervised identification of the phases and order parameter by principal component analysis, a common method in those studies, detects that the magnetization per spin has its greatest variation with the temperature, the actual control parameter of the phase transition. Then, by using a neural network (NN) without hidden layers (the simplest possible) and informed by the symmetry of the Hamiltonian, an explanation is provided for the strategy used in finding the supervised learning solution for the critical temperature of the model's continuous phase transition. This allows the prediction of the minimal extension of the NN to solve the problem when the symmetry is not known, which becomes also explainable. These results pave the way to a physics-informed explainable generalized framework, enabling the extraction of physical laws and principles from the parameters of the models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. L. Wang, Physical Review B 94, 195105 (2016).
  2. J. Carrasquilla and R. G. Melko, Nature Physics 13, 431 (2017).
  3. W. Hu, R. R. P. Singh, and R. T. Scalettar, Physical Review E 95, 062122 (2017).
  4. F. Schindler, N. Regnault, and T. Neupert, Physical Review B 95, 245134 (2017).
  5. E. P. Van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Nature Physics 13, 435 (2017).
  6. K. Ch’ng, N. Vazquez, and E. Khatami, Physical Review E 97, 013306 (2018).
  7. Y. Zhang, P. Ginsparg, and E.-A. Kim, Physical Review Research 2, 023283 (2020).
  8. S. Huang, W. Klein, and H. Gould, Physical Review E 103, 033305 (2021).
  9. D. Yevick, The European Physical Journal B 95, 56 (2022).
  10. R. Z. H. Chau Nguyen and J. Berg, Advances in Physics 66, 197 (2017).
  11. S. J. Wetzel, Physical Review E 96, 022140 (2017).
  12. S. J. Wetzel and M. Scherzer, Physical Review B 96, 184410 (2017).
  13. Y.-H. Liu and E. P. Van Nieuwenburg, Physical Review Letters 120, 176401 (2018).
  14. Y. Zhang and E.-A. Kim, Physial Review Letters 118, 216401 (2017).
  15. S. S. Lee and B. J. Kim, Physical Review E 99, 043308 (2019).
  16. D. Kim and D.-H. Kim, Phys. Rev. E 98, 022138 (2018).
  17. N. Walker, K.-M. Tam, and M. Jarrell, Scientific Reports 10, 13047 (2020).
  18. L. Onsager, Phys. Rev. 65, 117 (1944).
  19. D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, New York, 2005).
  20. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980  (2014).

Summary

We haven't generated a summary for this paper yet.