Hybrid Kerr-electro-optic frequency combs on thin-film lithium niobate (2402.11669v1)
Abstract: Optical frequency combs are indispensable links between the optical and microwave domains, enabling a wide range of applications including precision spectroscopy, ultrastable frequency generation, and timekeeping. Chip-scale integration miniaturizes bulk implementations onto photonic chips, offering highly compact, stable, and power-efficient frequency comb sources. State of the art integrated frequency comb sources are based on resonantly-enhanced Kerr effect and, more recently, on electro-optic effect. While the former can routinely reach octave-spanning bandwidths and the latter feature microwave-rate spacings, achieving both in the same material platform has been challenging. Here, we leverage both strong Kerr nonlinearity and efficient electro-optic phase modulation available in the ultralow-loss thin-film lithium niobate photonic platform, to demonstrate a hybrid Kerr-electro-optic frequency comb with stabilized spacing. In our approach, a dissipative Kerr soliton is first generated, and then electro-optic division is used to realize a frequency comb with 2,589 comb lines spaced by 29.308 GHz and spanning 75.9 THz (588 nm) end-to-end. Further, we demonstrate electronic stabilization and control of the soliton spacing, naturally facilitated by our approach. The broadband, microwave-rate comb in this work overcomes the spacing-span tradeoff that exists in all integrated frequency comb sources, and paves the way towards chip-scale solutions for complex tasks such as laser spectroscopy covering multiple bands, micro- and millimeter-wave generation, and massively parallel optical communications.
- Optical frequency metrology. Nature 416, 233–237 (2002).
- Optical frequency combs: Coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).
- Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).
- Dual-comb spectroscopy. Optica 3, 414–426 (2016).
- Frequency comb spectroscopy. Nature Photonics 13, 146–157 (2019).
- Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
- Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nature Photonics 5, 425–429 (2011).
- Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
- Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nature photonics 11, 44–47 (2017).
- Liu, J. et al. Photonic microwave generation in the x-and k-band using integrated soliton microcombs. Nature Photonics 14, 486–491 (2020).
- Tetsumoto, T. et al. Optically referenced 300 ghz millimetre-wave oscillator. Nature Photonics 15, 516–522 (2021).
- Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).
- Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).
- Herr, T. et al. Temporal solitons in optical microresonators. Nature Photonics 8, 145–152 (2014).
- Dissipative kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
- Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).
- Resonant electro-optic frequency comb. Nature 568, 378–381 (2019).
- Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nature Photonics 16, 679–685 (2022).
- Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).
- Boes, A. et al. Lithium niobate photonics: Unlocking the electromagnetic spectrum. Science 379, eabj4396 (2023).
- Shi, B. et al. Frequency-comb-linearized, widely tunable lasers for coherent ranging. arXiv preprint arXiv:2308.15875 (2023).
- Koenig, S. et al. Wireless sub-thz communication system with high data rate. Nature Photonics 7, 977–981 (2013).
- Wang, B. et al. Towards high-power, high-coherence, integrated photonic mmwave platform with microcavity solitons. Light: Science & Applications 10, 4 (2021).
- Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).
- Jørgensen, A. et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nature Photonics 16, 798–802 (2022).
- Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nature Communications 13, 7862 (2022).
- Rizzo, A. et al. Massively scalable kerr comb-driven silicon photonic link. Nature Photonics 17, 781–790 (2023).
- Optical atomic clocks. Reviews of Modern Physics 87, 637 (2015).
- Keller, U. Recent developments in compact ultrafast lasers. Nature 424, 831–838 (2003).
- Supercontinuum generation in photonic crystal fiber. Reviews of modern physics 78, 1135 (2006).
- Xiang, C. et al. 3d integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).
- Kudelin, I. et al. Photonic chip-based low noise microwave oscillator. arXiv preprint arXiv:2307.08937 (2023).
- Sun, S. et al. Integrated optical frequency division for stable microwave and mmwave generation. arXiv preprint arXiv:2305.13575 (2023).
- Integrated optical frequency comb technologies. Nature Photonics 16, 95–108 (2022).
- Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).
- Pfeiffer, M. H. et al. Octave-spanning dissipative kerr soliton frequency combs in Si3N4𝑆subscript𝑖3subscript𝑁4{Si}_{3}{N}_{4}italic_S italic_i start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_N start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT microresonators. Optica 4, 684–691 (2017).
- Liu, X. et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nature Communications 12, 5428 (2021).
- Weng, H. et al. Directly accessing octave-spanning dissipative kerr soliton frequency combs in an aln microresonator. Photonics Research 9, 1351–1357 (2021).
- Anderson, M. H. et al. Zero dispersion kerr solitons in optical microresonators. Nature communications 13, 4764 (2022).
- Cheng, R. et al. On-chip synchronous pumped χ(3)superscript𝜒3\chi^{(3)}italic_χ start_POSTSUPERSCRIPT ( 3 ) end_POSTSUPERSCRIPT optical parametric oscillator on thin-film lithium niobate. arXiv preprint arXiv:2304.12878 (2023).
- Hybrid electro-optically modulated microcombs. Physical review letters 109, 263901 (2012).
- Drake, T. E. et al. Terahertz-rate kerr-microresonator optical clockwork. Physical Review X 9, 031023 (2019).
- Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023).
- Monolithic kerr and electro-optic hybrid microcombs. Optica 9, 1060–1065 (2022).
- He, Y. et al. High-speed tunable microwave-rate soliton microcomb. Nature Communications 14, 3467 (2023).
- Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at cmos-compatible voltages. Nature 562, 101–104 (2018).
- Xu, M. et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission. Optica 9, 61–62 (2022).
- Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).
- Lu, J. et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/w. Optica 6, 1455–1460 (2019).
- McKenna, T. P. et al. Ultra-low-power second-order nonlinear optics on a chip. Nature Communications 13, 4532 (2022).
- Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics 13, 242–352 (2021).
- Monolithic ultra-high-q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).
- He, Y. et al. Self-starting bi-chromatic LiNbO33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT soliton microcomb. Optica 6, 1138–1144 (2019).
- Wan, S. et al. Photorefraction-assisted self-emergence of dissipative kerr solitons. arXiv preprint arXiv:2305.02590 (2023).
- Dynamical thermal behavior and thermal self-stability of microcavities. Optics express 12, 4742–4750 (2004).
- Brasch, V. et al. Photonic chip–based optical frequency comb using soliton cherenkov radiation. Science 351, 357–360 (2016).
- Parametric seeding of a microresonator optical frequency comb. Optics Express 21, 17615–17624 (2013).
- Liu, X. et al. Ultra-broadband and low-loss edge coupler for highly efficient second harmonic generation in thin-film lithium niobate. Advanced Photonics Nexus 1, 016001–016001 (2022).
- Zhou, Y. et al. Monolithically integrated active passive waveguide array fabricated on thin film lithium niobate using a single continuous photolithography process. Laser & Photonics Reviews 17, 2200686 (2023).
- Zhu, D. et al. Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator. Light: Science & Applications 11, 327 (2022).
- Jin, W. et al. Hertz-linewidth semiconductor lasers using cmos-ready ultra-high-q microresonators. Nature Photonics 15, 346–353 (2021).
- de Beeck, C. O. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288–1289 (2021).
- Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022).
- Li, M. et al. Integrated pockels laser. Nature communications 13, 5344 (2022).
- Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).
- Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023).
- Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature photonics 3, 529–533 (2009).
- Self-referenced photonic chip soliton kerr frequency comb. Light: Science & Applications 6, e16202–e16202 (2017).
- Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
- Xu, X. et al. 11 tops photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).
- He, L. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Optics letters 44, 2314–2317 (2019).
- Yuan, Z. et al. Soliton pulse pairs at multiple colors in normal dispersion microresonators. arXiv preprint arXiv:2301.10976 (2023).
- Xue, X. et al. Mode-locked dark pulse kerr combs in normal-dispersion microresonators. Nature Photonics 9, 594–600 (2015).
- Helgason, Ó. B. et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nature Photonics 17, 992–999 (2023).
- Jung, H. et al. Tantala kerr nonlinear integrated photonics. Optica 8, 811–817 (2021).
- Soliton frequency comb at microwave rates in a high-q silica microresonator. Optica 2, 1078–1085 (2015).
- Wu, L. et al. Algaas soliton microcombs at room temperature. Optics Letters 48, 3853–3856 (2023).
- Near-octave lithium niobate soliton microcomb. Optica 7, 1275–1278 (2020).
- Quantum optics of soliton microcombs. Nature Photonics 16, 52–58 (2022).
- Diamond nonlinear photonics. Nature Photonics 8, 369–374 (2014).
- Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nature Photonics 14, 57–62 (2020).
- Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Communications Physics 6, 144 (2023).
- Yu, S.-P. et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nature Photonics 15, 461–467 (2021).
- Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nature Photonics 17, 943–950 (2023).
- Stokes solitons in optical microcavities. Nature Physics 13, 53–57 (2017).
- Bao, H. et al. Laser cavity-soliton microcombs. Nature Photonics 13, 384–389 (2019).
- Bruch, A. W. et al. Pockels soliton microcomb. Nature Photonics 15, 21–27 (2021).
- Soliton crystals in kerr resonators. Nature Photonics 11, 671–676 (2017).
- Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).
- Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).
- Kim, B. Y. et al. Turn-key, high-efficiency kerr comb source. Optics letters 44, 4475–4478 (2019).
- Raja, A. S. et al. Electrically pumped photonic integrated soliton microcomb. Nature communications 10, 680 (2019).