Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On efficient normal bases over binary fields (2402.11544v1)

Published 18 Feb 2024 in cs.IT, cs.CR, and math.IT

Abstract: Binary field extensions are fundamental to many applications, such as multivariate public key cryptography, code-based cryptography, and error-correcting codes. Their implementation requires a foundation in number theory and algebraic geometry and necessitates the utilization of efficient bases. The continuous increase in the power of computation, and the design of new (quantum) computers increase the threat to the security of systems and impose increasingly demanding encryption standards with huge polynomial or extension degrees. For cryptographic purposes or other common implementations of finite fields arithmetic, it is essential to explore a wide range of implementations with diverse bases. Unlike some bases, polynomial and Gaussian normal bases are well-documented and widely employed. In this paper, we explore other forms of bases of $\mathbb{F}_{2n}$ over $\mathbb{F}_2$ to demonstrate efficient implementation of operations within different ranges. To achieve this, we leverage results on fast computations and elliptic periods introduced by Couveignes and Lercier, and subsequently expanded upon by Ezome and Sall. This leads to the establishment of new tables for efficient computation over binary fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. D. W. Ash, I. F. Blake and S. A. Vanstone, Low complexity normal bases, Discrete Appl. Math., 25 (1989) 191-210.
  2. Finding (good) normal bases in finite fields, In Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC ’91, 173-178, ACM, New York, NY, USA, 1991.
  3. The Magma algebra system, Computational Algebra Group, University of Sydney, http://magma.maths.usyd.edu.au/magma/.
  4. Gauss periods as constructions of low complexity normal bases, Des. Codes Cryptogr. 62 (2012) 43-62.
  5. The equivariant complexity of multiplication in finite field extensions Journal of Algebra 622 (2023) 694-720.
  6. Elliptic periods for finite fields. Finite Fields Appl., 15 (2009) 1-22.
  7. Normal bases from 1-dimensional algebraic groups. J. Symb. Comput., 101 (2020) 152-169.
  8. On finite field arithmetic in characteristic 2. Finite Fields Appl., 68 (2020) 101739.
  9. S. Gao. Normal bases over finite fields, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D), University of Waterloo (Canada).
  10. Gauss periods: orders and cryptographical applications. Math. Comput., 67, (1998) 343–352.
  11. Algorithms for exponentiation in finite fields, J. Symb. Comput., (2000) 879-889
  12. J. von zur Gathen and J. Gerhard.: Modern Computer Algebra. Cambridge University Press, Cambridge (2003). https://books.google.fr/books?id=NuEHj0wPwgIC
  13. Efficient multiplication using type 2 optimal normal bases. In Claude Carlet and Berk Sunar, editors, WAIFI, volume 4547 of Lecture Notes in Computer Science, pages 55-68. Springer, 2007.
  14. C. F. Gauss: Disquisitiones Arithmeticae, Braunschweig, 1801, republished, 1863, as vol. 1 of Werke; French transl., Recherches Arithmétiques, Paris, 1807, republished Hermann, Paris, 1910; German transl., Arithmetische Untersuchungen, Springer-Verlag, Berlin, 1889, republished Chelsea, New York, 1965; English transl., Yale, New Haven and London, 1966, 1986.
  15. Handbook of Finite Fields Website. https://people.math.carleton.ca/~daniel/hff/, Last accessed on January 31, 2024.
  16. D. Harvey and J. van der Hoeven Polynomial multiplication over finite fields in time O⁢(n⁢log⁡n)𝑂𝑛𝑛O(n\log n)italic_O ( italic_n roman_log italic_n ) 2019.
  17. A. Reyhani-Masoleh and M. A. Hasan. A new construction of Massey-Omura parallel multiplier over GF⁢(2m)GFsuperscript2𝑚{\mathrm{GF}}(2^{m})roman_GF ( 2 start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ). IEEE Trans. Comput, 51: 511-520, 2002.
  18. A. Reyhani-Masoleh and M. A. Hasan. Efficient multiplication beyond optimal normal bases. IEEE Trans. Comput, 52: 428-439, 2003.
  19. H. W. Lenstra and R. Schoof Primitive normal bases for finite fields. Math. Comp., 48 (1987) 217-231.
  20. J. L. Massey and J. K. Omura.: Computational method and apparatus for finite field arithmetic, U.S. patent #4,587,627, May 1986.
  21. J. Milne: Elliptic Curves. BookSurge Publishers 2006.
  22. Normal Basis Exhaustive Search: 10 Years Later, In: Budaghyan, L., Rodriguez-Henriquez, F. (eds) Arithmetic of Finite Fields. WAIFI 2018. Lecture Notes in Computer Science., vol 11321, Springer, Cham (2018) 188-206.
  23. G. L. Mullen and D. Panario, Handbook of Finite Fields, CRC Press, Boca Raton, FL, (2013).
  24. Optimal normal bases G⁢F⁢(pn)𝐺𝐹superscript𝑝𝑛GF(p^{n})italic_G italic_F ( italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ), Discrete Appl. Math., 22 (1988/1989) 149-161.
  25. preprint available, https://arxiv.org/abs/2401.11872v1.
  26. Normal Bases algorithms and tables for fast computation in high dimensions https://github.com/sallme/FastComputationAlgorithms
  27. J.M. Pollard. The Fast Fourier Transform in a finite field. Mathematics of Computation 25(114), 365-374 (1971)
  28. A. Schonhage, V. Strassen: Schnelle multiplikation großer zahlen [fast multiplication of large numbers]. Computing 7 (3–4), 281–292 (1971). https://doi.org/10.1007/BF02242355
  29. J. H. Silverman, The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.
  30. Artin-Schreier extensions of normal bases. Finite Fields Appl. 53 (2018) 267-286.
  31. A. Wassermann, Konstruktion von Normalbasen, Bayreuther Mathematische Schriften., 31 (1990) 155-164.
  32. E. Witt, Zyklische körper und algebren der charateristik p𝑝pitalic_p vom grad pnsuperscript𝑝𝑛p^{n}italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT structur diskret bewerteter perfekter körper mit vollkommenem restklassenkörper der characteristik pnsuperscript𝑝𝑛p^{n}italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT, J. Reine Undwandte Math., 176 (1936) 126–140.

Summary

We haven't generated a summary for this paper yet.