Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deformable Object Manipulation With Constraints Using Path Set Planning and Tracking (2402.11429v1)

Published 18 Feb 2024 in cs.RO

Abstract: In robotic deformable object manipulation (DOM) applications, constraints arise commonly from environments and task-specific requirements. Enabling DOM with constraints is therefore crucial for its deployment in practice. However, dealing with constraints turns out to be challenging due to many inherent factors such as inaccessible deformation models of deformable objects (DOs) and varying environmental setups. This article presents a systematic manipulation framework for DOM subject to constraints by proposing a novel path set planning and tracking scheme. First, constrained DOM tasks are formulated into a versatile optimization formalism which enables dynamic constraint imposition. Because of the lack of the local optimization objective and high state dimensionality, the formulated problem is not analytically solvable. To address this, planning of the path set, which collects paths of DO feedback points, is proposed subsequently to offer feasible path and motion references for DO in constrained setups. Both theoretical analyses and computationally efficient algorithmic implementation of path set planning are discussed. Lastly, a control architecture combining path set tracking and constraint handling is designed for task execution. The effectiveness of our methods is validated in a variety of DOM tasks with constrained experimental settings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. D. Navarro-Alarcon, Y.-H. Liu, J. G. Romero, and P. Li, “On the visual deformation servoing of compliant objects: Uncalibrated control methods and experiments,” Int. J. Robot. Res., vol. 33, no. 11, pp. 1462–1480, 2014.
  2. D. Navarro-Alarcon, H. M. Yip, Z. Wang, Y.-H. Liu, F. Zhong, T. Zhang, and P. Li, “Automatic 3-D manipulation of soft objects by robotic arms with an adaptive deformation model,” IEEE Trans. Robot., vol. 32, no. 2, pp. 429–441, 2016.
  3. D. Berenson, “Manipulation of deformable objects without modeling and simulating deformation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2013, pp. 4525-4532.
  4. D. Mcconachie and D. Berenson, “Estimating model utility for deformable object manipulation using multiarmed bandit methods,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 967–979, 2018.
  5. J. Sanchez, J.-A. Corrales, B.-C. Bouzgarrou, and Y. Mezouar, “Robotic manipulation and sensing of deformable objects in domestic and industrial applications: A survey,” Int. J. Robot. Res., vol. 37, no. 7, pp. 688–716, 2018.
  6. H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and control methods for deformable object manipulation,” Sci. Robot., vol. 6, no. 54, 2021.
  7. F. Lamiraux and L. E. Kavraki, “Planning paths for elastic objects under manipulation constraints,” Int. J. Robot. Res., vol. 20, no. 3, pp. 188–208, 2001.
  8. D. Mcconachie, A. Dobson, M. Ruan, and D. Berenson, “Manipulating deformable objects by interleaving prediction, planning, and control,” Int. J. Robot. Res., vol. 39, no. 8, pp. 957–982, 2020.
  9. J. Huang, Y. Cai, X. Chu, R. H. Taylor and K. W. S. Au, “Non-fixed contact manipulation control framework for deformable objects with active contact adjustment,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 2878-2885, 2021.
  10. F. Ficuciello, A. Migliozzi, E. Coevoet, A. Petit, and C. Duriez, “FEM-based deformation control for dexterous manipulation of 3-D soft objects,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2018, pp. 4007-4013.
  11. D. Navarro-Alarcon, Y.-H. Liu, J. G. Romero, and P. Li, “Model-free visually servoed deformation control of elastic objects by robot manipulators,” IEEE Trans. Robot., vol. 29, no. 6, pp. 1457–1468, 2013.
  12. F. Alambeigi, Z. Wang, R. Hegeman, Y.-H. Liu, and M. Armand, “A robust data-driven approach for online learning and manipulation of unmodeled 3-D heterogeneous compliant objects,” IEEE Robotic. Autom. Lett., vol. 3, no. 4, pp. 4140–4147, 2018.
  13. Z. Hu, P. Sun, and J. Pan, “Three-dimensional deformable object manipulation using fast online Gaussian process regression,” IEEE Robot. Autom. Lett., vol. 3, no. 2, pp. 979–986, 2018.
  14. M. Saha and P. Isto, “Manipulation planning for deformable linear objects,” IEEE Trans. Robot., vol. 23, no. 6, pp. 1141–1150, 2007.
  15. O. Roussel, A. Borum, M. Taix, and T. Bretl, “Manipulation planning with contacts for an extensible elastic rod by sampling on the submanifold of static equilibrium configurations,” in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 3116-3121.
  16. A. Liégeois, “Automatic supervisory control of the configuration and behavior of multibody mechanisms” IEEE Trans. Sysm. Man, Cybern., vol. 7, no. 12, pp. 868-871, 1977.
  17. B. Siciliano and J.-J. Slotine, “A general framework for managing multiple tasks in highly redundant robotic systems,” in Proc. Int. Conf. Adv. Robot., 1991, pp. 1211–1216.
  18. S. Chiaverini, “Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators,” IEEE Trans. Robot. Autom., vol. 13, no. 3, pp. 398–410, 1997.
  19. T. F. Chan and Dubey, “A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators.” IEEE Trans. Robot. Autom., vol. 11, no. 2, pp. 286-292, 1995.
  20. A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments,” Int J. Robot. Res., vol. 4, no. 3, pp. 109–117, 1985.
  21. O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task,” IEEE Trans. Robot., vol. 27, no. 4, pp. 785–792, 2011.
  22. A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic programming: Fast online humanoid-robot motion generation,” Int. J. Robot. Res., vol. 7, no. 33, pp. 1006–1028, 2014.
  23. N. Mansard and F. Chaumette, “Task sequencing for high-level sensor-based control,” IEEE Trans. Robot., vol. 23, no. 1, pp. 60–72, 2007.
  24. N. Mansard, O. Khatib, and A. Kheddar, “A unified approach to integrate unilateral constraints in the stack of tasks,” IEEE Trans. Robot., vol. 25, no. 3, pp. 670-685, 2009.
  25. S. Hirai and T. Wada, “Indirect simultaneous positioning of deformable objects with multi-pinching fingers based on an uncertain model,” Robotica, vol. 18, no. 1, pp. 3-11, 2000.
  26. T. Wada, S. Hirai, S. Kawamura, and N. Kamiji, “Robust manipulation of deformable objects by a simple PID feedback,” in Proc. IEEE Int. Conf. Robot. Autom., 2001, pp. 85-90.
  27. R. Jansen, K. Hauser, N. Chentanez, F. V. D. Stappen, and K. Goldberg, “Surgical retraction of non-uniform deformable layers of tissue: 2-D robot grasping and path planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2009, pp. 4092-4097.
  28. S. Patil and R. Alterovitz, “Toward automated tissue retraction in robot-assisted surgery,” in Proc. IEEE Int. Conf. Robot. Autom., 2010, pp. 2088-2094.
  29. C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Math. Comput., vol. 19, no. 92, pp. 577–577, 1965.
  30. Z. Hu, T. Han, P. Sun, J. Pan, and D. Manocha, “3-D deformable object manipulation using deep neural networks,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4255–4261, 2019.
  31. A. Wang, T. Kurutach, K. Liu, P. Abbeel, and A. Tamar, “Learning robotic manipulation through visual planning and acting,” Robotic.: Sci. Syst., 2019.
  32. P. Mitrano, D. McConachie, and D. Berenson, “Learning where to trust unreliable models in an unstructured world for deformable object manipulation,” Sci. Robot., vol. 6, no. 54, 2021.
  33. M. Yu, K. Lv, H. Zhong, S. Song, and X. Li, “Global model learning for large deformation control of elastic deformable linear objects: An efficient and adaptive approach,” IEEE Trans. Robot., vol. 39, no. 1, pp. 417–436, 2023.
  34. B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and K. Goldberg, “Multilateral surgical pattern cutting in 2-D orthotropic gauze with deep reinforcement learning policies for tensioning,” in Proc. IEEE Int. Conf. Robot. Autom., 2017. pp. 2371-2378.
  35. C. Shin, P. W. Ferguson, S. A. Pedram, J. Ma, E. P. Dutson, and J. Rosen, “Autonomous tissue manipulation via surgical robot using learning based model predictive control,” in Proc. IEEE Int. Conf. Robot. Autom., 2019, pp. 3875-3881.
  36. Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to manipulate deformable objects without demonstrations,” Robotic.: Sci. Syst., 2020.
  37. R. Jangir, G. Alenya, and C. Torras, “Dynamic cloth manipulation with deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 4630-4636.
  38. P. Jiménez, “Survey on model-based manipulation planning of deformable objects,” Robot. Comput. Integr. Manuf., vol. 28, no. 2, pp. 154–163, 2012.
  39. M. Moll and L. E. Kavraki, “Path planning for deformable linear objects,” IEEE Trans. Robot., vol. 22, no. 4, pp. 625–636, 2006.
  40. B. Timothy and Z. McCarthy, “Quasi-static manipulation of a Kirchhoff elastic rod based on a geometric analysis of equilibrium configurations,” Int. J. Robot. Res., vol. 33, no. 1, pp. 48-68, 2014.
  41. L. Lu and S. Akella, “Folding cartons with fixtures: A motion planning approach,” IEEE Trans. Robot. Autom., vol. 16, no. 4, pp. 346–356, 2000.
  42. O. Burchan Bayazit, Jyh-Ming Lien, and N. M. Amato, “Probabilistic roadmap motion planning for deformable objects,” in Proc. IEEE Int. Conf. Robot. Autom., 2002, pp. 2126-2133.
  43. R. Gayle, M. C. Lin, and D. Manocha, “Constraint-based motion planning of deformable robots,” in Proc. IEEE Int. Conf. Robot. Autom., 2005, pp. 1046-1053.
  44. W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive representations for deformable objects using contrastive estimation,” in Proc. Conf. Robot Learn., 2021, vol. 155, pp. 564–574.
  45. M. Lippi, P. Poklukar, M. C. Welle, A. Varava, H. Yin, A. Marino, and D. Kragic, “Enabling visual action planning for object manipulation through Latent Space roadmap,” IEEE Trans. Robot., vol. 39, no. 1, pp. 57–75, 2023.
  46. X. Chu, H. W. Yip, Y. Cai, T. Y. Chung, S. Moran, and K. W. S. Au, “A Compliant robotic instrument with coupled tendon driven articulated wrist control for organ retraction,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 4225-4232, 2018.
  47. S. Karaman, M.R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion planning using the RRT*{}^{*}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT,” in Proc. IEEE Int. Conf. Robot. Autom., 2011, pp. 1478-1483.
  48. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, 2011.
  49. J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2014, pp. 2997-3004.
  50. Y. Guo and L. E. Parker, “A distributed and optimal motion planning approach for multiple mobile robots,” in Proc. IEEE Int. Conf. Robot. Autom., 2002, pp. 2612-2619.
  51. M. Saha and P. Isto, “Multi-Robot motion planning by incremental coordination,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2006, pp. 5960-5963.
  52. G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with performance bounds,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2011, pp. 3260-3267.
  53. R. Luna and K. E. Bekris, “Efficient and complete centralized multi-robot path planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2011, pp. 3268-3275.
  54. G. Fang, C.-D. Matte, R. B. Scharff, T.-H. Kwok, and C. C. Wang, “Kinematics of soft robots by geometric computing,” IEEE Trans. Robot., vol. 36, no. 4, pp. 1272–1286, 2020.
  55. L. Jaillet and T. Simeon, “Path deformation roadmaps: Compact graphs with useful cycles for motion planning,” Int. J. Robot. Res., vol. 27, no. 11-12, pp. 1175–1188, 2008.
  56. B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust real-time UAV replanning using guided gradient-based optimization and topological paths,” in Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 1208-1214.
  57. B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor: Robust and perception-aware trajectory replanning for quadrotor fast flight,” IEEE Trans. Robot., vol. 37, no. 6, pp. 1992–2009, 2021.
  58. E. Schmitzberger, J.-L. Bouchet, M. Dufaut, D. Wolf, and R. Husson, “Capture of homotopy classes with probabilistic road map,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2002, pp. 2317– 2322.
  59. S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints in search-based robot path planning,” Auton. Robots, vol. 33, no. 3, pp. 273–290, 2012.
  60. H. Ling and D. W. Jacobs, “Shape classification using the inner-distance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, pp. 286–299, 2007.
  61. J. Huang and K. W. S. Au, “Task-oriented grasping position selection in deformable object manipulation,” IEEE Robot. Autom. Lett., vol. 8, no. 2, pp. 776-783, 2023.
  62. B. K. Horn, H. M. Hilden, and S. Negahdaripour, “Closed-form solution of absolute orientation using orthonormal matrices,” J. Opt. Soc. Am., vol. 5, no. 7, pp. 1127-1135, 1988.
  63. K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of two 3-D point sets,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 9, no. 5, pp. 698–700, 1987.
  64. H. Yang, J. Shi, and L. Carlone, “Teaser: Fast and certifiable point cloud registration,” IEEE Trans. Robot., vol. 37, no. 2, pp. 314–333, 2021.
  65. T. Tang, C. Wang, and M. Tomizuka, “A framework for manipulating deformable linear objects by coherent point drift,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3426–3433, 2018.
  66. G. A. Waltersson, R. Laezza, and Y. Karayiannidis, “Planning and control for cable-routing with dual-arm robot,” in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp.1046-1052.
  67. S. Jin, W. Lian, C. Wang, M. Tomizuka, and S. Schaal, “Robotic cable routing with spatial representation,” IEEE Robot. Autom. Lett., vol. 7, no. 2, pp. 5687–5694, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.