Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Odor Perceptual Shift Keying (OPSK) for Odor-Based Molecular Communication (2402.11346v1)

Published 17 Feb 2024 in cs.ET and cs.NI

Abstract: Molecular communication (MC) has promising potential and a wide range of applications. However, odor-based communication which is common in nature, has not been sufficiently examined within the context of MC, yet. In this paper, we introduce a novel approach for implementing odor-based MC systems. We propose a new modulation scheme called Odor Perceptual Shift Keying (OPSK), which encodes information by shifting the perceptual values of odor molecules in pleasantness, intensity and edibility dimensions. We construct a system which transmits OPSK modulated signals between a transmitter and receiver. We conduct analyses on the system parameters to simulate performance metrics such as symbol error rate (SER) and symbol rate (SR). Our analyses indicate that OPSK has a potential for realizing odor-based MC systems. We find that under certain conditions, reliable odor-based MC systems can be implemented using OPSK across a variety of distance ranges from millimeters up to kilometers. Additionally, we introduce adaptive symbol transmission to our system for input symbol sequences featuring symbols that occur with unequal probabilities. We further demonstrate that the proposed algorithm at the transmitter side can achieve extended operation times.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, “A comprehensive survey of recent advancements in molecular communication,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1887–1919, 2016.
  2. O. B. Akan, H. Ramezani, T. Khan, N. A. Abbasi, and M. Kuscu, “Fundamentals of molecular information and communication science,” Proceedings of the IEEE, vol. 105, no. 2, pp. 306–318, 2017.
  3. M. S. Kuran, H. B. Yilmaz, I. Demirkol, N. Farsad, and A. Goldsmith, “A survey on modulation techniques in molecular communication via diffusion,” IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 7–28, 2021.
  4. L. Conchou, P. Lucas, C. Meslin, M. Proffit, M. Staudt, and M. Renou, “Insect odorscapes: From plant volatiles to natural olfactory scenes,” Frontiers in Physiology, vol. 10, 2019.
  5. M. Renou and S. Anton, “Insect olfactory communication in a complex and changing world,” Current Opinion in Insect Science, vol. 42, pp. 1–7, 2020.
  6. M. Russell, “Human olfactory communication,” Nature, vol. 260, pp. 520–522, 1976.
  7. L. Gine and I. Akyildiz, “Molecular communication options for long range nanonetworks,” Computer Networks, vol. 53, pp. 2753–2766, 2009.
  8. J. F. Eisenberg and D. G. Kleiman, “Olfactory communication in mammals,” Annual Review of Ecology and Systematics, vol. 3, no. 1, pp. 1–32, 1972.
  9. Y. Ariyakul and S. Wisayataksin, “Data modulation technique using concentration of odor molecules,” pp. 1–4, 2018.
  10. M. S. Kuran, H. B. Yilmaz, T. Tugcu, and I. F. Akyildiz, “Modulation techniques for communication via diffusion in nanonetworks,” pp. 1–5, 2011.
  11. N.-R. Kim and C.-B. Chae, “Novel modulation techniques using isomers as messenger molecules for nano communication networks via diffusion,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 12, pp. 847–856, 2013.
  12. S. Pudasaini, S. Shin, and K. Kwak, “Run-length aware hybrid modulation scheme for diffusion-based molecular communication,” 14th International Symposium on Communications and Information Technologies, ISCIT 2014, 2014.
  13. ——, “Robust modulation technique for diffusion-based molecular communications in nanonetworks,” vol. X, pp. 1–4, 2015.
  14. M. C. Gursoy, E. Basar, A. E. Pusane, and T. Tugcu, “Index modulation for molecular communication via diffusion systems,” IEEE Transactions on Communications, vol. 67, no. 5, pp. 3337–3350, 2019.
  15. ——, “Pulse position-based spatial modulation for molecular communications,” IEEE Communications Letters, vol. 23, no. 4, pp. 596–599, 2019.
  16. Y. Tang, M. Wen, X. Chen, Y. Huang, and L.-L. Yang, “Molecular type permutation shift keying for molecular communication,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 6, no. 2, pp. 160–164, 2020.
  17. D. Aktas and O. B. Akan, “Weight shift keying (wsk) with practical mechanical receivers for molecular communications in internet of everything,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 11, pp. 3285–3294, 2022.
  18. M. Kuscu, E. Dinc, B. A. Bilgin, H. Ramezani, and O. B. Akan, “Transmitter and receiver architectures for molecular communications: A survey on physical design with modulation, coding, and detection techniques,” Proceedings of the IEEE, vol. 107, no. 7, pp. 1302–1341, 2019.
  19. C. M. Philpott, A. Bennett, and G. E. Murty, “A brief history of olfaction and olfactometry,” The Journal of Laryngology & Otology, vol. 122, no. 7, p. 657–662, 2008.
  20. R. H. Wright, “Odour and chemical constitution,” Nature, vol. 173, p. 831, 1954.
  21. J. Amoore, “Stereochemical theory of olfaction,” Nature, vol. 198, p. 271–272, 1963.
  22. A. Dravnieks, “Physicochemical basis of olfaction,” Annals of the New York Academy of Sciences, vol. 116, p. 429–439, 1964.
  23. M. Zarzo, “Hedonic judgments of chemical compounds are correlated with molecular size,” Sensors (Basel, Switzerland), vol. 11, pp. 3667–86, 2011.
  24. A. Dravnieks, “Atlas of odor character profiles,” American Society for Testing and Materials, 1985.
  25. R. Harper, D. G. Land, and N. M. Griffiths, “Odour qualities: A glossary of usage,” British Journal of Psychology, vol. 59, no. 3, pp. 231–252, 1968.
  26. R. H. Wright and K. M. Michels, “Evaluation of far infrared relations to odor by a standards similarity method,” Annals of the New York Academy of Sciences, vol. 116, pp. 535–551, 1964.
  27. J. E. Amoore and D. Venstrom, “Correlations between stereochemical assessments and organoleptic analysis of odorous compounds,” Olfaction and Taste II, pp. 3–17, 1967.
  28. R. Khan, C.-H. Luk, A. Flinker, A. Aggarwal, H. Lapid, R. Haddad, and N. Sobel, “Predicting odor pleasantness from odorant structure: Pleasantness as a reflection of the physical world,” The Journal of neuroscience : The Official Journal of the Society for Neuroscience, vol. 27, pp. 10 015–23, 2007.
  29. M. Zarzo, “Psychologic dimensions in the perception of everyday odors: Pleasantness and edibility,” Journal of Sensory Studies, vol. 23, pp. 354–376, 2008.
  30. C. Bontempi, P. Corbelin, G. Brand, and L. Jacquot, “Ortho- and retronasal stimulations with specific food odours: Hedonic and familiarity ratings are related to chemosensory pleasure scale scores,” Flavour and Fragrance Journal, vol. 38, no. 4, pp. 243–252, 2023.
  31. A. Bierling, I. Croy, T. Hummel, G. Cuniberti, and A. Croy, “Olfactory perception in relation to the physicochemical odor space,” Brain Sciences, vol. 11, p. 563, 2021.
  32. A. Keller and L. Vosshall, “Olfactory perception of chemically diverse molecules,” BMC Neuroscience, vol. 17, p. 55, 2016.
  33. S. Schiffman, R. Gutierrez-Osuna, and H. Nagle, Jr, “Measuring odor intensity with e-noses and other sensor types,” Proceedings of the 9th International Symposium on Olfaction and Electronic Nose, 2002.
  34. R. Haddad, A. Medhanie, Y. Roth, D. Harel, and N. Sobel, “Predicting odor pleasantness with an electronic nose,” PLoS Computational Biology, vol. 6, p. e1000740, 2010.
  35. A. Sharma, B. K. Saha, R. Kumar, and P. K. Varadwaj, “Olfactionbase: a repository to explore odors, odorants, olfactory receptors and odorant–receptor interactions,” Nucleic Acids Research, vol. 50, no. D1, p. D678–D686, 2022. [Online]. Available: https://doi.org/10.1093/nar/gkab763
  36. D. T. McGuiness, S. Giannoukos, A. Marshall, and S. Taylor, “Parameter analysis in macro-scale molecular communications using advection-diffusion,” IEEE Access, vol. 6, pp. 46 706–46 717, 2018.
  37. R. Roy, P. Chattopadhyay, B. Tudu, N. Bhattacharyya, and R. Bandyopadhyay, “Artificial flavor perception of black tea using fusion of electronic nose and tongue response: A bayesian statistical approach,” Journal of Food Engineering, vol. 142, p. 87–93, 2014.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com