Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SpikeNAS: A Fast Memory-Aware Neural Architecture Search Framework for Spiking Neural Network-based Autonomous Agents (2402.11322v3)

Published 17 Feb 2024 in cs.NE, cs.AI, and cs.LG

Abstract: Autonomous mobile agents (e.g., UAVs and UGVs) are typically expected to incur low power/energy consumption for solving machine learning tasks (such as object recognition), as these mobile agents are usually powered by portable batteries. These requirements can be fulfilled by Spiking Neural Networks (SNNs), since their bio-inspired spike-based operations offer high accuracy and ultra low-power/energy computation. Currently, most of the SNN architectures are derived from Artificial Neural Networks whose neurons' architectures and operations are different from SNNs, or developed without considering memory budgets from the underlying processing hardware of autonomous mobile agents. These limitations hinder SNNs from reaching their full potential in accuracy and efficiency. Toward this, we propose SpikeNAS, a novel fast memory-aware neural architecture search (NAS) framework for SNNs that quickly finds an appropriate SNN architecture with high accuracy under the given memory budgets from autonomous mobile agents. To do this, our SpikeNAS employs several key steps: analyzing the impacts of network operations on the accuracy, enhancing the network architecture to improve the learning quality, and developing a fast memory-aware search algorithm. The experimental results show that our SpikeNAS improves the searching time and maintains high accuracy as compared to state-of-the-art while meeting the given memory budgets (e.g., 4.4x faster search with 1.3% accuracy improvement for CIFAR100, using an Nvidia RTX 6000 Ada GPU machine), thereby quickly providing the appropriate SNN architecture for the memory-constrained autonomous mobile agents.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets