Papers
Topics
Authors
Recent
2000 character limit reached

Clebsch-Gordan coefficients, hypergeometric functions and the binomial distribution

Published 17 Feb 2024 in math-ph, math.MP, and physics.atom-ph | (2402.11298v1)

Abstract: A particular case of degenerate Clebsch-Gordan coefficient can be expressed with three binomial coefficients. Such a formula, which may be obtained using the standard ladder operator procedure, can also be derived from the Racah-Shimpuku formula or from expressions of Clebsch-Gordan coefficients in terms of $_3F_2$ hypergeometric functions. The O'Hara interesting interpretation of this Clebsch-Gordan coefficient by binomial random variables can also be related to hypergeometric functions ($_2F_1$), in the case where one of the parameters tends to infinity. This emphasizes the links between Clebsch-Gordan coefficients, hypergeometric functions and, what has been less exploited until now, the notion of probability within the framework of the quantum theory of angular momentum.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 4 likes about this paper.