2000 character limit reached
Functional Partial Least-Squares: Optimal Rates and Adaptation (2402.11134v1)
Published 16 Feb 2024 in math.ST, econ.EM, stat.CO, stat.ME, stat.ML, and stat.TH
Abstract: We consider the functional linear regression model with a scalar response and a Hilbert space-valued predictor, a well-known ill-posed inverse problem. We propose a new formulation of the functional partial least-squares (PLS) estimator related to the conjugate gradient method. We shall show that the estimator achieves the (nearly) optimal convergence rate on a class of ellipsoids and we introduce an early stopping rule which adapts to the unknown degree of ill-posedness. Some theoretical and simulation comparison between the estimator and the principal component regression estimator is provided.
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleOperator lipschitz functions Operator lipschitz functions.\BBCQ \APACjournalVolNumPagesRussian Mathematical Surveys714605–702. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2017. \BBOQ\APACrefatitleIs completeness necessary? Estimation in nonidentified linear models Is completeness necessary? estimation in nonidentified linear models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1709.03473. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2018. \BBOQ\APACrefatitleOptimal adaptation for early stopping in statistical inverse problems Optimal adaptation for early stopping in statistical inverse problems.\BBCQ \APACjournalVolNumPagesSIAM/ASA Journal on Uncertainty Quantification631043–1075. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleConvergence rates of kernel conjugate gradient for random design regression Convergence rates of kernel conjugate gradient for random design regression.\BBCQ \APACjournalVolNumPagesAnalysis and Applications1406763–794. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2012. \BBOQ\APACrefatitleDiscrepancy principle for statistical inverse problems with application to conjugate gradient iteration Discrepancy principle for statistical inverse problems with application to conjugate gradient iteration.\BBCQ \APACjournalVolNumPagesInverse problems2811115011. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitlePLS: a new statistical insight through the prism of orthogonal polynomials Pls: a new statistical insight through the prism of orthogonal polynomials.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1405.5900. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2014. \BBOQ\APACrefatitleA Unified Framework to Study the Properties of the PLS Vector of Regression Coefficients A unified framework to study the properties of the pls vector of regression coefficients.\BBCQ \BIn \APACrefbtitleInternational Conference on Partial Least Squares and Related Methods International conference on partial least squares and related methods (\BPGS 227–237). \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2006. \BBOQ\APACrefatitlePrediction in functional linear regression Prediction in functional linear regression.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics3452159–2179. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2012. \BBOQ\APACrefatitleMinimax and adaptive prediction for functional linear regression Minimax and adaptive prediction for functional linear regression.\BBCQ \APACjournalVolNumPagesJournal of the American Statistical Association1074991201–1216. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1999. \BBOQ\APACrefatitleFunctional linear model Functional linear model.\BBCQ \APACjournalVolNumPagesStatistics & Probability Letters45111–22. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2003. \BBOQ\APACrefatitleSpline estimators for the functional linear model Spline estimators for the functional linear model.\BBCQ \APACjournalVolNumPagesStatistica Sinica133571–591. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleThresholding projection estimators in functional linear models Thresholding projection estimators in functional linear models.\BBCQ \APACjournalVolNumPagesJournal of Multivariate Analysis1012395–408. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2007. \BBOQ\APACrefatitleLinear inverse problems in structural econometrics estimation based on spectral decomposition and regularization Linear inverse problems in structural econometrics estimation based on spectral decomposition and regularization.\BBCQ \APACjournalVolNumPagesHandbook of econometrics65633–5751. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2016. \BBOQ\APACrefatitleIn-sample inference and forecasting in misspecified factor models In-sample inference and forecasting in misspecified factor models.\BBCQ \APACjournalVolNumPagesJournal of Business & Economic Statistics343313–338. \PrintBackRefs\CurrentBib
- \APACinsertmetastarcavalier2011inverse{APACrefauthors}Cavalier, L. \APACrefYearMonthDay2011. \BBOQ\APACrefatitleInverse problems in statistics Inverse problems in statistics.\BBCQ \BIn \APACrefbtitleInverse Problems and High-Dimensional Estimation: Stats in the Château Summer School, August 31-September 4, 2009 Inverse problems and high-dimensional estimation: Stats in the château summer school, august 31-september 4, 2009 (\BPGS 3–96). \APACaddressPublisherSpringer. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2012. \BBOQ\APACrefatitleAdaptive functional linear regression Adaptive functional linear regression.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics4062765–2797. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2009. \BBOQ\APACrefatitleSmoothing splines estimators for functional linear regression Smoothing splines estimators for functional linear regression.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics37135–72. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2012. \BBOQ\APACrefatitleMethodology and theory for partial least squares applied to functional data Methodology and theory for partial least squares applied to functional data.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics401322–352. \PrintBackRefs\CurrentBib
- \APACrefYear1996. \APACrefbtitleRegularization of inverse problems Regularization of inverse problems (\BVOL 375). \APACaddressPublisherSpringer Science & Business Media. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2007. \BBOQ\APACrefatitleMethodology and convergence rates for functional linear regression Methodology and convergence rates for functional linear regression.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics35170–91. \PrintBackRefs\CurrentBib
- \APACinsertmetastarhanke1995conjugate{APACrefauthors}Hanke, M. \APACrefYear1995. \APACrefbtitleConjugate gradient type methods for linear ill-posed problems Conjugate gradient type methods for linear ill-posed problems. \APACaddressPublisherPitman Research Notes in Mathematics Series. \PrintBackRefs\CurrentBib
- \APACinsertmetastarhelland1988structure{APACrefauthors}Helland, I\BPBIS. \APACrefYearMonthDay1988. \BBOQ\APACrefatitleOn the structure of partial least squares regression On the structure of partial least squares regression.\BBCQ \APACjournalVolNumPagesCommunications in statistics-Simulation and Computation172581–607. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1952. \BBOQ\APACrefatitleMethods of conjugate gradients for solving linear systems Methods of conjugate gradients for solving linear systems.\BBCQ \APACjournalVolNumPagesJournal of research of the National Bureau of Standards496409–436. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2008. \BBOQ\APACrefatitleNonlinear Estimation for Linear Inverse Problems with Error in the Operator Nonlinear estimation for linear inverse problems with error in the operator.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics1310–336. \PrintBackRefs\CurrentBib
- \APACinsertmetastarjolliffe1982note{APACrefauthors}Jolliffe, I\BPBIT. \APACrefYearMonthDay1982. \BBOQ\APACrefatitleA note on the use of principal components in regression A note on the use of principal components in regression.\BBCQ \APACjournalVolNumPagesApplied Statistics3300–303. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2015. \BBOQ\APACrefatitleThe three-pass regression filter: A new approach to forecasting using many predictors The three-pass regression filter: A new approach to forecasting using many predictors.\BBCQ \APACjournalVolNumPagesJournal of Econometrics1862294–316. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2010. \BBOQ\APACrefatitleEmpirical risk minimization in inverse problems Empirical risk minimization in inverse problems.\BBCQ \APACjournalVolNumPagesThe Annals of Statistics381482–511. \PrintBackRefs\CurrentBib
- \APACinsertmetastarkress1999linear{APACrefauthors}Kress, R. \APACrefYear1999. \APACrefbtitleLinear Integral Equations Linear integral equations (\BVOL 82). \APACaddressPublisherSpringer Science & Business Media. \PrintBackRefs\CurrentBib
- \APACinsertmetastarnemirovski1986regularizing{APACrefauthors}Nemirovski, A\BPBIS. \APACrefYearMonthDay1986. \BBOQ\APACrefatitleOn regularizing properties of the conjugate gradient method for ill-posed problems (in Russian) On regularizing properties of the conjugate gradient method for ill-posed problems (in russian).\BBCQ \APACjournalVolNumPagesZhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki263332–347. \PrintBackRefs\CurrentBib
- \APACrefYear1999. \APACrefbtitleNumerical optimization Numerical optimization. \APACaddressPublisherSpringer. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2002. \BBOQ\APACrefatitleExploiting the connection between PLS, Lanczos methods and conjugate gradients: alternative proofs of some properties of PLS Exploiting the connection between pls, lanczos methods and conjugate gradients: alternative proofs of some properties of pls.\BBCQ \APACjournalVolNumPagesJournal of Chemometrics: A Journal of the Chemometrics Society167361–367. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2005. \BBOQ\APACrefatitleClusterwise PLS regression on a stochastic process Clusterwise pls regression on a stochastic process.\BBCQ \APACjournalVolNumPagesComputational Statistics & Data Analysis49199–108. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay2007. \BBOQ\APACrefatitleFunctional principal component regression and functional partial least squares Functional principal component regression and functional partial least squares.\BBCQ \APACjournalVolNumPagesJournal of the American Statistical Association102479984–996. \PrintBackRefs\CurrentBib
- \APACinsertmetastartsybakov2008introduction{APACrefauthors}Tsybakov, A\BPBIB. \APACrefYear2009. \APACrefbtitleIntroduction to nonparametric estimation Introduction to nonparametric estimation. \APACaddressPublisherSpringer Science & Business Media. \PrintBackRefs\CurrentBib
- \APACrefYearMonthDay1984. \BBOQ\APACrefatitleThe collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses The collinearity problem in linear regression. the partial least squares (pls) approach to generalized inverses.\BBCQ \APACjournalVolNumPagesSIAM Journal on Scientific and Statistical Computing53735–743. \PrintBackRefs\CurrentBib