Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DAEDRA: A language model for predicting outcomes in passive pharmacovigilance reporting (2402.10951v1)

Published 10 Feb 2024 in cs.CL and cs.LG

Abstract: Over the recent years, the emergence of LLMs has given rise to a proliferation of domain-specific models that are intended to reflect the particularities of linguistic context and content as a correlate of the originating domain. This paper details the conception, design, training and evaluation of DAEDRA, a LLM designed to detect regulatory-relevant outcomes (mortality, ER attendance and hospitalisation) in adverse event reports elicited through passive reporting (PR). While PR is a highly cost-efficient way of eliciting information from a wide and diverse audience -- typically including not only physicians and healthcare providers but also patients, family members and other lay stakeholders --, this diversity makes PR corpora difficult to analyse. Generic LLMs may not capture the complex clinical dimensions while specific clinical or biomedical models may not perform well on lay reports. To evaluate the utility of a subdomain-specific LLM, an adaptive training approach was adapted, wherein base LLM candidates were evaluated on a subset of the corpus, and the best performer was trained on the entire corpus. This yielded a small but significant improvement in $F_1$ (+1%), precision (+2.5%) and recall (+3.8%), at a relatively low training cost and a single-day training time. Subdomain-specific LLMs continue to be viable options for better results when analysing highly specialised corpora.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. E. Alsentzer, J. Murphy, W. Boag, W.-H. Weng, D. Jindi, T. Naumann, and M. McDermott, “Publicly Available Clinical BERT Embeddings,” in Proceedings of the 2nd Clinical Natural Language Processing Workshop.   Minneapolis, Minnesota: Association for Computational Linguistics, 2019.
  2. B. Baer, M. Nguyen, E. J. Woo, S. Winiecki, J. Scott, D. Martin, T. Botsis, and R. Ball, “Can natural language processing improve the efficiency of vaccine adverse event report review?” Methods of Information in Medicine, vol. 55, no. 2, 2016.
  3. I. Beltagy, K. Lo, and A. Cohan, “SCIBERT: A pretrained language model for scientific text,” in EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference, 2019.
  4. E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the dangers of stochastic parrots: Can language models be too big?” in FAccT 2021 - Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 2021.
  5. T. Botsis, M. D. Nguyen, E. J. Woo, M. Markatou, and R. Ball, “Text mining for the vaccine adverse event reporting system: Medical text classification using informative feature selection,” Journal of the American Medical Informatics Association, vol. 18, no. 5, 2011.
  6. J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” in NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, vol. 1, 2019.
  7. Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon, “Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing,” ACM Transactions on Computing for Healthcare, vol. 3, no. 1, 2022.
  8. S. Gururangan, A. Marasovic, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and N. A. Smith, “Don’t stop pretraining: Adapt language models to domains and tasks,” in Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2020.
  9. A. E. Johnson, T. J. Pollard, L. Shen, L. W. H. Lehman, M. Feng, M. Ghassemi, B. Moody, P. Szolovits, L. Anthony Celi, and R. G. Mark, “MIMIC-III, a freely accessible critical care database,” Scientific Data, vol. 3, 2016.
  10. K. R. Kanakarajan, B. Kundumani, and M. Sankarasubbu, “BioELECTRA:Pretrained Biomedical text Encoder using Discriminators,” in Proceedings of the 20th Workshop on Biomedical Language Processing, BioNLP 2021, 2021.
  11. J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, “BioBERT: A pre-trained biomedical language representation model for biomedical text mining,” Bioinformatics, vol. 36, no. 4, 2020.
  12. X. Liu, G. L. Hersch, I. Khalil, and M. Devarakonda, “Clinical Trial Information Extraction with BERT,” in Proceedings - 2021 IEEE 9th International Conference on Healthcare Informatics, ISCHI 2021, 2021.
  13. B. O’ Donovan, R. M. Rodgers, A. R. Cox, and J. Krska, “Identifying and managing adverse drug reactions: Qualitative analysis of patient reports to the UK yellow card scheme,” British Journal of Clinical Pharmacology, vol. 88, no. 7, 2022.
  14. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, 2011.
  15. S. Scaboro, B. Portelli, E. Chersoni, E. Santus, and G. Serra, “Extensive evaluation of transformer-based architectures for adverse drug events extraction,” Knowledge-Based Systems, vol. 275, p. 110675, 9 2023.
  16. T. T. Shimabukuro, M. Nguyen, D. Martin, and F. DeStefano, “Safety monitoring in the Vaccine Adverse Event Reporting System (VAERS),” 2015.
  17. A. Turchin, S. Masharsky, and M. Zitnik, “Comparison of BERT implementations for natural language processing of narrative medical documents,” Informatics in Medicine Unlocked, vol. 36, 2023.
  18. W. Yoon, R. Jackson, E. Ford, V. Poroshin, and J. Kang, “Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework,” in EMNLP 2022 - Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Chris von Csefalvay (6 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com