Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Non-convex optimization problems for maximum hands-off control (2402.10402v1)

Published 16 Feb 2024 in math.OC, cs.SY, and eess.SY

Abstract: The maximum hands-off control is the optimal solution to the L0 optimal control problem. It has the minimum support length among all feasible control inputs. To avoid computational difficulties arising from its combinatorial nature, the convex approximation method that replaces the L0 norm by the L1 norm in the cost function has been employed on standard. However, this approximation method does not necessarily obtain the maximum hands-off control. In response to this limitation, this paper newly introduces a non-convex approximation method and formulates a class of non-convex optimal control problems that are always equivalent to the maximum hands-off control problem. Based on the results, this paper describes the computation method that quotes algorithms designed for the difference of convex functions optimization. Finally, this paper confirms the effectiveness of the non-convex approximation method with a numerical example.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse representation: algorithms and applications,” IEEE Access, vol. 3, pp. 490–530, 2015.
  2. B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995.
  3. E. J. Candès and Y. Plan, “Near-ideal model selection by ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT minimization,” Annals of Statistics, vol. 37, no. 5A, pp. 2145–2177, 2009.
  4. J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and its oracle properties,” Journal of the American Statistical Association, vol. 96, no. 456, pp. 1348–1360, 2001.
  5. C.-H. Zhang, “Nearly unbiased variable selection under minimax concave penalty,” Annals of Statistics, vol. 38, no. 2, pp. 894–942, 2010.
  6. L. E. Frank and J. H. Friedman, “A statistical view of some chemometrics regression tools,” Technometrics, vol. 35, no. 2, pp. 109–135, 1993.
  7. E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT minimization,” Journal of Fourier Analysis and Applications, vol. 14, pp. 877–905, 2008.
  8. R. Chartrand, “Exact reconstruction of sparse signals via nonconvex minimization,” IEEE Signal Processing Letters, vol. 14, no. 10, pp. 707–710, 2007.
  9. R. Chartrand and V. Staneva, “Restricted isometry properties and nonconvex compressive sensing,” Inverse Problems, vol. 24, no. 3, p. 035020, 2008.
  10. J. Trzasko and A. Manduca, “Highly undersampled magnetic resonance image reconstruction via homotopic ℓ0subscriptℓ0\ell_{0}roman_ℓ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT-minimization,” IEEE Transactions on Medical Imaging, vol. 28, no. 1, pp. 106–121, 2008.
  11. H. Tran and C. Webster, “A class of null space conditions for sparse recovery via nonconvex, non-separable minimizations,” Results in Applied Mathematics, vol. 3, p. 100011, 2019.
  12. J. Ying, J. V. M. Cardoso, and D. Palomar, “Nonconvex sparse graph learning under Laplacian constrained graphical model,” Advances in Neural Information Processing Systems, vol. 33, pp. 7101–7113, 2020.
  13. J. Woodworth and R. Chartrand, “Compressed sensing recovery via nonconvex shrinkage penalties,” Inverse Problems, vol. 32, no. 7, p. 075004, 2016.
  14. P. Yin, Y. Lou, Q. He, and J. Xin, “Minimization of ℓ1−2subscriptℓ12\ell_{1-2}roman_ℓ start_POSTSUBSCRIPT 1 - 2 end_POSTSUBSCRIPT for compressed sensing,” SIAM Journal on Scientific Computing, vol. 37, no. 1, pp. A536–A563, 2015.
  15. E. Soubies, L. Blanc-Féraud, and G. Aubert, “A continuous exact ℓ0subscriptℓ0\ell_{0}roman_ℓ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT penalty (CEL0) for least squares regularized problem,” SIAM Journal on Imaging Sciences, vol. 8, no. 3, pp. 1607–1639, 2015.
  16. K. Manohar, J. N. Kutz, and S. L. Brunton, “Optimal sensor and actuator selection using balanced model reduction,” IEEE Transactions on Automatic Control, vol. 67, no. 4, pp. 2108–2115, 2022.
  17. T. Gommans and W. Heemels, “Resource-aware MPC for constrained nonlinear systems: A self-triggered control approach,” Systems & Control Letters, vol. 79, pp. 59–67, 2015.
  18. L. R. G. Carrillo, W. J. Russell, J. P. Hespanha, and G. E. Collins, “State estimation of multiagent systems under impulsive noise and disturbances,” IEEE Transactions on Control Systems Technology, vol. 23, no. 1, pp. 13–26, 2015.
  19. M. Nagahara, D. E. Quevedo, and D. Nešić, “Maximum hands-off control: a paradigm of control effort minimization,” IEEE Transactions on Automatic Control, vol. 61, no. 3, pp. 735–747, 2016.
  20. T. Ikeda and K. Kashima, “On sparse optimal control for general linear systems,” IEEE Transactions on Automatic Control, vol. 64, no. 5, pp. 2077–2083, 2018.
  21. D. Chatterjee, M. Nagahara, D. E. Quevedo, and K. M. Rao, “Characterization of maximum hands-off control,” Systems & Control Letters, vol. 94, pp. 31–36, 2016.
  22. M. Nagahara, J. Østergaard, and D. E. Quevedo, “Discrete-time hands-off control by sparse optimization,” EURASIP Journal on Advances in Signal Processing, vol. 76, pp. 1–8, 2016.
  23. K. Ito, T. Ikeda, and K. Kashima, “Sparse optimal stochastic control,” Automatica, vol. 125, p. 109438, 2021.
  24. T. Zhang, “Analysis of multi-stage convex relaxation for sparse regularization.” Journal of Machine Learning Research, vol. 11, no. 3, 2010.
  25. H. A. L. Thi and T. P. Dinh, “DC programming and DCA: thirty years of developments,” Mathematical Programming, vol. 169, no. 1, pp. 5–68, 2018.
  26. P. D. Tao and L. H. An, “Convex analysis approach to DC programming: theory, algorithms and applications,” Acta Mathematica Vietnamica, vol. 22, no. 1, pp. 289–355, 1997.
  27. T. Sun, P. Yin, L. Cheng, and H. Jiang, “Alternating direction method of multipliers with difference of convex functions,” Advances in Computational Mathematics, vol. 44, pp. 723–744, 2018.
  28. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.
  29. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com