Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpolation between domains of powers of operators in quaternionic Banach spaces (2402.10383v1)

Published 16 Feb 2024 in math.FA

Abstract: In contrast to the classical complex spectral theory, where the spectrum is related to the invertibility of $\lambda-A:D(A)\subseteq X_\mathbb{C}\rightarrow X_\mathbb{C}$, in the noncommutative quaternionic $S$-spectral theory one uses the invertibility of the second order polynomial $Q_s(T):=T2-2\text{Re}(s)T+|s|2:D(T2)\subseteq X\rightarrow X$ to define the $S$-spectrum, where $X$ is a quaternionic Banach space. In this paper we will consider quaternionic operators $T$, for which at least one ray ${te{i\omega}\;|\;t>0}$, $\omega\in[0,\pi]$, $i\in\mathbb{S}$ is contained in the $S$-resolvent set, and the inverse operator $Q_s{-1}(T)$ admits certain decay properties on this ray. Utilizing the $K$-interpolation method, we then demonstrate that the domain $D(Tk)$ of the $k$-th power of $T$ is an intermediate space between $D(Tn)$ and $D(Tm)$, whenever $n<k<m\in\mathbb{N}0$. Moreover, also a characterization of the interpolation space $(X,D(Tn)){\theta,p}$, $\theta\in(0,1)$, $p\in[1,\infty]$, in is given in terms of integrability conditions on the pseudo $S$-resolvent $Q_s{-1}(T)$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (5)
  1. G. Birkhoff, J. von Neumann: The logic of quantum mechanics. Ann. of Math. (2) 37(4) (1936) 823–843.
  2. A. De Martino, S. Pinton: A polyanalytic functional calculus of order 2 on the S𝑆Sitalic_S-spectrum. Proc. Amer. Math. Soc. 151 no. 6 (2023) 2471–2488.
  3. M. Haase: The functional calculus for sectorial operators. Operator Theory: Advances and Applications 169. Birkhäuser Verlag, Basel (2006).
  4. A. Lunardi: Interpolation theory. Third edition [of MR2523200]. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)] 16. Edizioni della Normale, Pisa (2018) xiv+199 pp.
  5. A. Lunardi: Analytic semigroups and optimal regularity in parabolic problems. [2013 reprint of the 1995 original] [MR1329547]. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel (1995) xviii+424 pp.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com