Towards Tight Convex Relaxations for Contact-Rich Manipulation (2402.10312v2)
Abstract: We present a novel method for global motion planning of robotic systems that interact with the environment through contacts. Our method directly handles the hybrid nature of such tasks using tools from convex optimization. We formulate the motion-planning problem as a shortest-path problem in a graph of convex sets, where a path in the graph corresponds to a contact sequence and a convex set models the quasi-static dynamics within a fixed contact mode. For each contact mode, we use semidefinite programming to relax the nonconvex dynamics that results from the simultaneous optimization of the object's pose, contact locations, and contact forces. The result is a tight convex relaxation of the overall planning problem, that can be efficiently solved and quickly rounded to find a feasible contact-rich trajectory. As an initial application for evaluating our method, we apply it on the task of planar pushing. Exhaustive experiments show that our convex-optimization method generates plans that are consistently within a small percentage of the global optimum, without relying on an initial guess, and that our method succeeds in finding trajectories where a state-of-the-art baseline for contact-rich planning usually fails. We demonstrate the quality of these plans on a real robotic system.
- T. Marcucci, J. Umenberger, P. Parrilo, and R. Tedrake, “Shortest paths in graphs of convex sets,” SIAM Journal on Optimization, vol. 34, no. 1, pp. 507–532, 2024.
- M. T. Mason, “Mechanics and Planning of Manipulator Pushing Operations,” The International Journal of Robotics Research, vol. 5, no. 3, pp. 53–71, Sept. 1986.
- H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake, “Do differentiable simulators give better policy gradients?” in International Conference on Machine Learning. PMLR, 2022, pp. 20 668–20 696.
- H. J. T. Suh, T. Pang, and R. Tedrake, “Bundled gradients through contact via randomized smoothing,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4000–4007, 2022.
- Q. L. Lidec, L. Montaut, C. Schmid, I. Laptev, and J. Carpentier, “Leveraging randomized smoothing for optimal control of nonsmooth dynamical systems,” arXiv preprint arXiv:2203.03986, 2022.
- J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.
- T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.
- A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine, “Learning complex dexterous manipulation with deep reinforcement learning and demonstrations,” arXiv preprint arXiv:1709.10087, 2017.
- S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates,” in 2017 IEEE international conference on robotics and automation (ICRA). IEEE, 2017, pp. 3389–3396.
- D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine, “Scalable deep reinforcement learning for vision-based robotic manipulation,” in Proceedings of The 2nd Conference on Robot Learning, ser. Proceedings of Machine Learning Research, A. Billard, A. Dragan, J. Peters, and J. Morimoto, Eds., vol. 87. PMLR, 29–31 Oct 2018, pp. 651–673. [Online]. Available: https://proceedings.mlr.press/v87/kalashnikov18a.html
- O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous in-hand manipulation,” The International Journal of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.
- T. Chen, J. Xu, and P. Agrawal, “A system for general in-hand object re-orientation,” in Conference on Robot Learning. PMLR, 2022, pp. 297–307.
- H. Qi, B. Yi, S. Suresh, M. Lambeta, Y. Ma, R. Calandra, and J. Malik, “General in-hand object rotation with vision and touch,” 2023.
- Z.-H. Yin, B. Huang, Y. Qin, Q. Chen, and X. Wang, “Rotating without seeing: Towards in-hand dexterity through touch,” arXiv preprint arXiv:2303.10880, 2023.
- C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion policy: Visuomotor policy learning via action diffusion,” 2023.
- Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan, D. Sadigh, C. Finn, and S. Levine, “Octo: An open-source generalist robot policy,” https://octo-models.github.io, 2023.
- N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto, “On bringing robots home,” arXiv preprint arXiv:2311.16098, 2023.
- M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Planning with diffusion for flexible behavior synthesis,” arXiv preprint arXiv:2205.09991, 2022.
- P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mordatch, and J. Tompson, “Implicit behavioral cloning,” in Conference on Robot Learning. PMLR, 2022, pp. 158–168.
- X. Cheng, E. Huang, Y. Hou, and M. T. Mason, “Contact Mode Guided Sampling-Based Planning for Quasistatic Dexterous Manipulation in 2D,” May 2021, pp. 6520–6526.
- ——, “Contact mode guided motion planning for quasidynamic dexterous manipulation in 3d,” in 2022 International Conference on Robotics and Automation (ICRA). IEEE Press, 2022, p. 2730–2736. [Online]. Available: https://doi.org/10.1109/ICRA46639.2022.9811872
- W. Vega-Brown and N. Roy, “Asymptotically optimal planning under piecewise-analytic constraints,” in Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics. Springer, 2020, pp. 528–543.
- C. Chen, P. Culbertson, M. Lepert, M. Schwager, and J. Bohg, “Trajectotree: Trajectory optimization meets tree search for planning multi-contact dexterous manipulation,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 8262–8268.
- N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “Planar in-hand manipulation via motion cones,” The International Journal of Robotics Research, vol. 39, no. 2-3, pp. 163–182, 2020. [Online]. Available: https://doi.org/10.1177/0278364919880257
- A. Wu, S. Sadraddini, and R. Tedrake, “R3t: Rapidly-exploring random reachable set tree for optimal kinodynamic planning of nonlinear hybrid systems,” in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 4245–4251.
- T. Pang, H. J. T. Suh, L. Yang, and R. Tedrake, “Global Planning for Contact-Rich Manipulation via Local Smoothing of Quasi-dynamic Contact Models,” June 2022.
- I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex behaviors through contact-invariant optimization,” ACM Transactions on Graphics (ToG), vol. 31, no. 4, pp. 1–8, 2012.
- Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors through online trajectory optimization,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 4906–4913.
- Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic programming,” in 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014, pp. 1168–1175.
- I. Chatzinikolaidis and Z. Li, “Trajectory optimization of contact-rich motions using implicit differential dynamic programming,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2626–2633, 2021.
- T. A. Howell, S. Le Cleac’h, S. Singh, P. Florence, Z. Manchester, and V. Sindhwani, “Trajectory optimization with optimization-based dynamics,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6750–6757, 2022.
- M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies through contact,” The International Journal of Robotics Research, vol. 33, no. 1, pp. 69–81, Jan. 2014.
- J.-P. Sleiman, J. Carius, R. Grandia, M. Wermelinger, and M. Hutter, “Contact-implicit trajectory optimization for dynamic object manipulation,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 6814–6821.
- Z. Manchester and S. Kuindersma, “Variational contact-implicit trajectory optimization,” in Robotics Research: The 18th International Symposium ISRR. Springer, 2020, pp. 985–1000.
- W. Jin and M. Posa, “Task-Driven Hybrid Model Reduction for Dexterous Manipulation,” Nov. 2022.
- M. Wang, A. Ö. Önol, P. Long, and T. Padır, “Contact-Implicit Planning and Control for Non-prehensile Manipulation Using State-Triggered Constraints,” in Robotics Research, ser. Springer Proceedings in Advanced Robotics, A. Billard, T. Asfour, and O. Khatib, Eds. Cham: Springer Nature Switzerland, 2023, pp. 189–204.
- P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. Del Prete, “Optimization-based control for dynamic legged robots,” IEEE Transactions on Robotics, 2023.
- T. Marcucci and R. Tedrake, “Mixed-integer formulations for optimal control of piecewise-affine systems,” in Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control, 2019, pp. 230–239.
- T. Marcucci, R. Deits, M. Gabiccini, A. Bicchi, and R. Tedrake, “Approximate hybrid model predictive control for multi-contact push recovery in complex environments,” in 2017 IEEE-RAS 17th international conference on humanoid robotics (Humanoids). IEEE, 2017, pp. 31–38.
- B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu, D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Fernández-López, and C. Semini, “Simultaneous contact, gait, and motion planning for robust multilegged locomotion via mixed-integer convex optimization,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2531–2538, 2017.
- F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile manipulation with hybrid model predictive control,” The International Journal of Robotics Research, vol. 39, no. 7, pp. 755–773, June 2020.
- ——, “Feedback Control of the Pusher-Slider System: A Story of Hybrid and Underactuated Contact Dynamics,” in Algorithmic Foundations of Robotics XII, K. Goldberg, P. Abbeel, K. Bekris, and L. Miller, Eds., vol. 13. Cham: Springer International Publishing, 2020, pp. 800–815.
- Z. Liu, G. Zhou, J. He, T. Marcucci, L. Fei-Fei, J. Wu, and Y. Li, “Model-based control with sparse neural dynamics,” in Thirty-seventh Conference on Neural Information Processing Systems, 2023.
- R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer convex optimization,” in 2014 IEEE-RAS international conference on humanoid robots. IEEE, 2014, pp. 279–286.
- F. A. Koolen, “Balance control and locomotion planning for humanoid robots using nonlinear centroidal models,” Thesis, Massachusetts Institute of Technology, 2020.
- B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of humanoid momentum dynamics for multi-contact motion generation,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE, Nov. 2016, pp. 842–849.
- S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry friction Part 1. Limit surface and moment function,” Wear, vol. 143, no. 2, pp. 307–330, Mar. 1991.
- K. M. Lynch and M. T. Mason, “Stable Pushing: Mechanics, Controllability, and Planning,” The International Journal of Robotics Research, vol. 15, no. 6, pp. 533–556, Dec. 1996.
- F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive Planar Manipulation with Convex Hybrid MPC,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018, pp. 247–253.
- T. Marcucci, M. Petersen, D. von Wrangel, and Russ Tedrake, “Motion planning around obstacles with convex optimization,” Science Robotics, vol. 8, no. 84, p. eadf7843, 2023.
- N. Z. Shor, “Quadratic optimization problems,” Soviet Journal of Computer and Systems Sciences, vol. 25, pp. 1–11, 1987.
- J. Park and S. P. Boyd, “General Heuristics for Nonconvex Quadratically Constrained Quadratic Programming,” arXiv: Optimization and Control, Mar. 2017.
- P. A. Parrilo, “Lecture notes from MIT 6.7230 - Algebraic techniques and semidefinite optimization,” 2023.
- M. X. Goemans and D. P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming,” Journal of the ACM (JACM), vol. 42, no. 6, pp. 1115–1145, 1995.
- H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and Certifiable Point Cloud Registration,” IEEE Transactions on Robotics, vol. 37, no. 2, pp. 314–333, Apr. 2021.
- F. Dümbgen, C. Holmes, and T. D. Barfoot, “Safe and Smooth: Certified Continuous-Time Range-Only Localization,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 1117–1124, Feb. 2023.
- M. P. Giamou, “Semidefinite Relaxations for Geometric Problems in Robotics,” Thesis, Mar. 2023.
- B. El Khadir, J. B. Lasserre, and V. Sindhwani, “Piecewise-linear motion planning amidst static, moving, or morphing obstacles,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 7802–7808.
- K. Lynch, H. Maekawa, and K. Tanie, “Manipulation And Active Sensing By Pushing Using Tactile Feedback,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1. Raleigh, NC: IEEE, 1992, pp. 416–421.
- N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “Planar in-hand manipulation via motion cones,” The International Journal of Robotics Research, vol. 39, no. 2-3, pp. 163–182, Mar. 2020.
- N. Chavan Dafle, R. Holladay, and A. Rodriguez, “In-Hand Manipulation via Motion Cones,” Robotics: Science and Systems XIV, June 2018.
- J. B. Lasserre, “The moment-sos hierarchy,” in Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018. World Scientific, 2018, pp. 3773–3794.
- S. Teng, A. Jasour, R. Vasudevan, and M. Ghaffari, “Convex geometric motion planning on lie groups via moment relaxation,” arXiv preprint arXiv:2305.13565, 2023.
- M. Garstka, M. Cannon, and P. Goulart, “A clique graph based merging strategy for decomposable SDPs,” May 2020.
- B. P. Graesdal. (2024) Planning through contact. [Online]. Available: https://github.com/bernhardpg/planning-through-contact
- S. Burer and R. D. Monteiro, “A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization,” Mathematical programming, vol. 95, no. 2, pp. 329–357, 2003.
- A. Majumdar, G. Hall, and A. A. Ahmadi, “Recent scalability improvements for semidefinite programming with applications in machine learning, control, and robotics,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 331–360, 2020.
- G. Blekherman, S. S. Dey, M. Molinaro, and S. Sun, “Sparse psd approximation of the psd cone,” Mathematical Programming, vol. 191, no. 2, pp. 981–1004, 2022.