Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Identification is Pointless: Quantum Coordinates, Localisation of Events, and the Quantum Hole Argument (2402.10267v2)

Published 15 Feb 2024 in quant-ph, gr-qc, and physics.hist-ph

Abstract: The study of quantum reference frames (QRFs) is motivated by the idea of taking into account the quantum properties of the reference frames used, explicitly or implicitly, in our description of physical systems. Like classical reference frames, QRFs can be used to define physical quantities relationally. Unlike their classical analogue, they relativise the notions of superposition and entanglement. Here, we explain this feature by examining how configurations or locations are identified across different branches in superposition. We show that, in the presence of symmetries, whether a system is in "the same" or "different" configurations across the branches depends on the choice of QRF. Hence, sameness and difference -- and thus superposition and entanglement -- lose their absolute meaning. We apply these ideas to the context of semi-classical spacetimes in superposition and use coincidences of four scalar fields to construct a comparison map between spacetime points in the different branches. This reveals that the localisation of an event is frame-dependent. We discuss the implications for indefinite causal order and the locality of interaction and conclude with a generalisation of Einstein's hole argument to the quantum context.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (75)
  1. F. Giacomini, E. Castro-Ruiz, and Č. Brukner, Quantum mechanics and the covariance of physical laws in quantum reference frames, Nature Communications 10, 494 (2019).
  2. A. Vanrietvelde, P. A. Höhn, and F. Giacomini, Switching quantum reference frames in the N-body problem and the absence of global relational perspectives, Quantum 7, 1088 (2023).
  3. F. Giacomini, E. Castro-Ruiz, and Č. Brukner, Relativistic quantum reference frames: The operational meaning of spin, Phys. Rev. Lett. 123, 090404 (2019).
  4. P. A. Höhn, A. R. H. Smith, and M. P. E. Lock, Trinity of relational quantum dynamics, Phys. Rev. D 104, 066001 (2021).
  5. A.-C. de la Hamette and T. D. Galley, Quantum reference frames for general symmetry groups, Quantum 4, 367 (2020).
  6. M. Krumm, P. A. Höhn, and M. P. Müller, Quantum reference frame transformations as symmetries and the paradox of the third particle, Quantum 5, 530 (2021).
  7. M. Mikusch, L. C. Barbado, and Č. Brukner, Transformation of spin in quantum reference frames, Phys. Rev. Research 3, 043138 (2021).
  8. P. A. Höhn, M. Krumm, and M. P. Müller, Internal quantum reference frames for finite Abelian groups, J. Math. Phys. 63, 112207 (2022), arXiv:2107.07545 [quant-ph] .
  9. E. Castro-Ruiz and O. Oreshkov, Relative subsystems and quantum reference frame transformations (2021), arXiv:2110.13199 [quant-ph] .
  10. A.-C. de la Hamette, S. L. Ludescher, and M. P. Müller, Entanglement-asymmetry correspondence for internal quantum reference frames, Phys. Rev. Lett. 129, 260404 (2022a).
  11. C. Cepollaro and F. Giacomini, Quantum generalisation of Einstein’s Equivalence Principle can be verified with entangled clocks as quantum reference frames (2022), arXiv:2112.03303 [quant-ph] .
  12. L. Apadula, E. Castro-Ruiz, and Č. Brukner, Quantum Reference Frames for Lorentz Symmetry (2022), arXiv:2212.14081 [quant-ph] .
  13. V. Kabel, Č. Brukner, and W. Wieland, Quantum reference frames at the boundary of spacetime, Phys. Rev. D 108, 106022 (2023).
  14. T. Carette, J. Głowacki, and L. Loveridge, Operational quantum reference frame transformations (2023), arXiv:2303.14002 [quant-ph] .
  15. H. Gomes and J. Butterfield, The Hole Argument and Beyond: Part II: Treating Non-isomorphic Spacetimes, Journal of Physics: Conference Series 2533, 012003 (2023a).
  16. H. Gomes, Same-diff? Conceptual similarities between gauge transformations and diffeomorphisms. Part III: Representational conventions and relationism (2024a), arXiv:2402.09198 [physics.hist-ph] .
  17. D. K. Lewis, Counterpart theory and quantified modal logic, The Journal of Philosophy 65, 113–126 (1968).
  18. D. K. Lewis, Counterfactuals (Blackwell, Malden, Mass., 1973).
  19. D. Lewis, On the Plurality of Worlds (Wiley-Blackwell, Malden, Mass., 1986).
  20. H. Gomes and J. Butterfield, The Hole Argument and Beyond: Part I: The Story so Far, Journal of Physics: Conference Series 2533, 012002 (2023b).
  21. H. Gomes, Same-diff? Conceptual similarities between gauge transformations and diffeomorphisms. Part I: Symmetries and isomorphisms (2022), arXiv:2110.07203 [physics.hist-ph] .
  22. H. Gomes, Same-diff? Conceptual similarities between gauge transformations and diffeomorphisms. Part II: Challenges to sophistication (2023), arXiv:2110.07204 [physics.hist-ph] .
  23. F. Giacomini and Č. Brukner, Einstein’s Equivalence principle for superpositions of gravitational fields (2021), arXiv:2012.13754 [quant-ph] .
  24. F. Giacomini and Č. Brukner, Quantum superposition of spacetimes obeys Einstein’s Equivalence Principle, AVS Quantum Sci. 4, 015601 (2022).
  25. J. Foo, R. B. Mann, and M. Zych, Schrödinger’s black hole cat, International Journal of Modern Physics D 31, 2242016 (2022b).
  26. J. Foo, R. B. Mann, and M. Zych, Relativity and decoherence of spacetime superpositions (2023b), arXiv:2302.03259 [gr-qc] .
  27. R. Geroch, Limits of spacetimes, Communications in Mathematical Physics 13, 180–193 (1969).
  28. D. Jia, Causally neutral quantum physics (2019), arXiv:1902.05837 [quant-ph] .
  29. O. Oreshkov, F. Costa, and Č. Brukner, Quantum correlations with no causal order, Nature Communications 3, 1092 (2012).
  30. O. Oreshkov, Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics, Quantum 3, 206 (2019).
  31. N. Paunković  and M. Vojinović, Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders, Quantum 4, 275 (2020).
  32. V. Vilasini and R. Renner, Embedding cyclic causal structures in acyclic spacetimes: no-go results for process matrices (2022), arXiv:2203.11245 [quant-ph] .
  33. V. Gribov, Quantization of non-abelian gauge theories, Nuclear Physics B 139, 1–19 (1978).
  34. T. Diez and G. Rudolph, Slice theorem and orbit type stratification in infinite dimensions, Differential Geometry and its Applications 65, 176–211 (2019).
  35. J. A. Isenberg and J. E. Marsden, A slice theorem for the space of solutions of Einstein’s equations., Physics Reports 89, 179–222 (1982).
  36. C. Rovelli, A note on the formal structure of quantum constrained systems (1997), arXiv:gr-qc/9711028 [gr-qc] .
  37. M. Aspelmeyer, When Zeh Meets Feynman: How to Avoid the Appearance of a Classical World in Gravity Experiments, in From Quantum to Classical: Essays in Honour of H.-Dieter Zeh, edited by C. Kiefer (Springer International Publishing, Cham, 2022) pp. 85–95.
  38. L. Diósi, A universal master equation for the gravitational violation of quantum mechanics, Physics Letters A 120, 377–381 (1987).
  39. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A 40, 1165–1174 (1989).
  40. R. Penrose, On gravity’s role in quantum state reduction, Gen. Rel. Grav. 28, 581–600 (1996).
  41. B.-L. B. Hu and E. Verdaguer, Semiclassical and Stochastic Gravity: Quantum Field Effects on Curved Spacetime, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2020).
  42. D. N. Page and W. K. Wootters, Evolution without evolution: Dynamics described by stationary observables, Phys. Rev. D 27, 2885–2892 (1983).
  43. W. K. Wootters, “Time”replaced by quantum correlations, International Journal of Theoretical Physics 23, 701–711 (1984).
  44. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum time, Phys. Rev. D 92, 045033 (2015).
  45. E. Adlam, N. Linnemann, and J. Read, Constructive Axiomatics in Spacetime Physics Part III: A Constructive Axiomatic Approach to Quantum Spacetime (2022), arXiv:2208.07249 [gr-qc] .
  46. N. Bamonti, What is a reference frame in general relativity? (2023), arXiv:2307.09338 [physics.hist-ph] .
  47. M. Christodoulou and C. Rovelli, On the possibility of laboratory evidence for quantum superposition of geometries, Physics Letters B 792, 64–68 (2019).
  48. C. Wüthrich, Challenging the spacetime structuralist, Philosophy of Science 76, 1039–1051 (2009).
  49. H. Westman and S. Sonego, Coordinates, observables and symmetry in relativity, Annals of Physics 324, 1585–1611 (2009).
  50. E. Kretschmann, Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie, Annalen der Physik 358, 575–614 (1918).
  51. A. Komar, Construction of a complete set of independent observables in the general theory of relativity, Phys. Rev. 111, 1182–1187 (1958).
  52. J. B. Barbour, On general covariance and best matching, in Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity, edited by C. Callender and N. Huggett (Cambridge University Press, 2001) p. 199–212.
  53. C. Goeller, P. A. Höhn, and J. Kirklin, Diffeomorphism-invariant observables and dynamical frames in gravity: reconciling bulk locality with general covariance (2022), arXiv:2206.01193 [hep-th] .
  54. J. Tambornino, Relational Observables in Gravity: a Review, SIGMA 8, 017 (2012), arXiv:1109.0740 [gr-qc] .
  55. K. Giesel and T. Thiemann, Scalar Material Reference Systems and Loop Quantum Gravity, Class. Quant. Grav. 32, 135015 (2015), arXiv:1206.3807 [gr-qc] .
  56. L. Marchetti and D. Oriti, Effective dynamics of scalar cosmological perturbations from quantum gravity, Journal of Cosmology and Astroparticle Physics 2022 (07), 004.
  57. C. Marletto and V. Vedral, Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Phys. Rev. Lett. 119, 240402 (2017).
  58. J. Oppenheim, A postquantum theory of classical gravity?, Phys. Rev. X 13, 041040 (2023).
  59. M. Giovanelli, Nothing but coincidences: the point-coincidence and Einstein’s struggle with the meaning of coordinates in physics, European Journal for Philosophy of Science 11, 45 (2021).
  60. C. Rovelli, Partial observables, Phys. Rev. D 65, 124013 (2002).
  61. H. Gomes, Completing Complete Observables (2024b), manuscript in preparation.
  62. C. Rovelli, What is observable in classical and quantum gravity?, Classical and Quantum Gravity 8, 297–316 (1991).
  63. B. Dittrich, Partial and complete observables for Hamiltonian constrained systems, Gen. Rel. Grav. 39, 1891–1927 (2007), arXiv:gr-qc/0411013 .
  64. B. Dittrich, Partial and complete observables for canonical general relativity, Class. Quant. Grav. 23, 6155–6184 (2006), arXiv:gr-qc/0507106 .
  65. R. Faleiro, N. Paunkovic, and M. Vojinovic, Operational interpretation of the vacuum and process matrices for identical particles, Quantum 7, 986 (2023).
  66. H. Gomes and A. Riello, The quasilocal degrees of freedom of Yang-Mills theory, SciPost Phys. 10, 130 (2021).
  67. P. A. Höhn, A. Russo, and A. R. H. Smith, Matter relative to quantum hypersurfaces,   (2023b), arXiv:2308.12912 [quant-ph] .
  68. W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, Journal of High Energy Physics 2016, 102 (2016), arXiv:1601.04744 [hep-th] .
  69. A. J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories, Journal of High Energy Physics 2018, 21 (2018), arXiv:1706.05061 [hep-th] .
  70. L. Freidel, M. Geiller, and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials and charges, JHEP 11, 026, arXiv:2006.12527 [hep-th] .
  71. H. Gomes and A. Riello, The observer’s ghost: notes on a field space connection, Journal of High Energy Physics 2017, 17 (2017).
  72. S. Carrozza and P. A. Höhn, Edge modes as reference frames and boundary actions from post-selection, Journal of High Energy Physics 2022, 172 (2022).
  73. S. Carrozza, S. Eccles, and P. A. Höhn, Edge modes as dynamical frames: charges from post-selection in generally covariant theories (2022), arXiv:2205.00913 [hep-th] .
  74. H. Gomes and A. Riello, Unified geometric framework for boundary charges and particle dressings, Phys. Rev. D 98, 025013 (2018).
  75. H. Gomes, Gauging the boundary in field-space, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67, 89–110 (2019).
Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper demonstrates that quantum superposition and entanglement are frame-dependent, altering standard event identification.
  • It introduces a mapping method using scalar field coincidences to localize events in semi-classical spacetimes.
  • The study generalizes Einstein's hole argument, showing that QRF shifts maintain a constant number of events.

Overview of "Identification is Pointless: Quantum Reference Frames, Localisation of Events, and the Quantum Hole Argument"

The paper "Identification is Pointless: Quantum Reference Frames, Localisation of Events, and the Quantum Hole Argument" presents an exploration of the theoretical foundations and implications of quantum reference frames (QRFs) in the context of quantum mechanics and general relativity. The authors, Kabel et al., from institutions such as the Austrian Academy of Sciences and Trinity College, University of Cambridge, explore the consequences of adopting QRFs, especially regarding the notions of superposition, entanglement, and the localization of events.

The paper is premised on the need to incorporate the quantum properties of reference frames used implicitly or explicitly when dealing with physical systems. Traditional frameworks use classical reference frames to define quantities like time, position, momentum, and spin. In quantum mechanics, however, these quantities are subject to relativization due to superposition and entanglement. The authors propose a novel explanation for the frame-dependence of these quantum properties, linking this dependency to the ability (or lack thereof) to identify configurations or locations across superposed branches of quantum states.

Key Arguments and Results

  1. Frame-dependence of Superposition and Entanglement:
    • The paper illustrates that superposition and entanglement depend on the choice of QRF due to the inherent symmetries of quantum systems. The authors argue that whether a system is perceived as the same or different across branches in superposition changes with the QRF, thus eliminating absolute meanings for these properties.
  2. Application to Semi-classical Spacetimes:
    • The authors extend the concept of QRFs to semi-classical spacetimes in superposition, where conventional notions of event localization are challenged. They propose using a comparison map between spacetime points across different branches, constructed through the coincidences of four scalar fields. This map enables assessment of whether events are localized at coinciding or disparate points across superposed spacetimes.
  3. Influences on Quantum and Classical Symmetries:
    • A generalization to quantum systems of Einstein's hole argument is proposed, where not only spacetime points but also their identifications across different superposed manifolds lose their inherent physical meaning. The authors argue that QRF changes should not have empirical consequences for interference experiments and maintain that the number of events remains constant in both flat and curved spacetime implementations of quantum-controlled causal orders.

Theoretical Implications

The paper's implications are significant both practically and theoretically. Practically, understanding QRFs could refine experimental setups in quantum mechanics and quantum gravity, ensuring that assumptions about reference frames are sound. Theoretically, it expands the field of quantum mechanics by offering a robust framework that accommodates frame-dependence of quantum properties, prompting reconsideration of foundational notions like causal order and the essence of quantum events.

Future Developments

Going forward, the incorporation of QRFs in quantum gravity models holds promise for resolving ambiguities in the treatment of space and time at the quantum level. Further development could deeply influence theories of quantum cosmology and the paper of quantum information in curved spacetime. Moreover, experimental validation of the theoretical predictions concerning QRF-induced frame-dependence is a fertile ground for future research, potentially uncovering new quantum phenomena.

In conclusion, this paper provides a comprehensive investigation into the use of QRFs, offering a graceful extension of classical concepts into the quantum domain while challenging researchers to reevaluate their understanding of quantum systems' spacetime at a foundational level.

Youtube Logo Streamline Icon: https://streamlinehq.com