Identification is Pointless: Quantum Coordinates, Localisation of Events, and the Quantum Hole Argument (2402.10267v2)
Abstract: The study of quantum reference frames (QRFs) is motivated by the idea of taking into account the quantum properties of the reference frames used, explicitly or implicitly, in our description of physical systems. Like classical reference frames, QRFs can be used to define physical quantities relationally. Unlike their classical analogue, they relativise the notions of superposition and entanglement. Here, we explain this feature by examining how configurations or locations are identified across different branches in superposition. We show that, in the presence of symmetries, whether a system is in "the same" or "different" configurations across the branches depends on the choice of QRF. Hence, sameness and difference -- and thus superposition and entanglement -- lose their absolute meaning. We apply these ideas to the context of semi-classical spacetimes in superposition and use coincidences of four scalar fields to construct a comparison map between spacetime points in the different branches. This reveals that the localisation of an event is frame-dependent. We discuss the implications for indefinite causal order and the locality of interaction and conclude with a generalisation of Einstein's hole argument to the quantum context.
- F. Giacomini, E. Castro-Ruiz, and Č. Brukner, Quantum mechanics and the covariance of physical laws in quantum reference frames, Nature Communications 10, 494 (2019).
- A. Vanrietvelde, P. A. Höhn, and F. Giacomini, Switching quantum reference frames in the N-body problem and the absence of global relational perspectives, Quantum 7, 1088 (2023).
- F. Giacomini, E. Castro-Ruiz, and Č. Brukner, Relativistic quantum reference frames: The operational meaning of spin, Phys. Rev. Lett. 123, 090404 (2019).
- P. A. Höhn, A. R. H. Smith, and M. P. E. Lock, Trinity of relational quantum dynamics, Phys. Rev. D 104, 066001 (2021).
- A.-C. de la Hamette and T. D. Galley, Quantum reference frames for general symmetry groups, Quantum 4, 367 (2020).
- M. Krumm, P. A. Höhn, and M. P. Müller, Quantum reference frame transformations as symmetries and the paradox of the third particle, Quantum 5, 530 (2021).
- M. Mikusch, L. C. Barbado, and Č. Brukner, Transformation of spin in quantum reference frames, Phys. Rev. Research 3, 043138 (2021).
- P. A. Höhn, M. Krumm, and M. P. Müller, Internal quantum reference frames for finite Abelian groups, J. Math. Phys. 63, 112207 (2022), arXiv:2107.07545 [quant-ph] .
- E. Castro-Ruiz and O. Oreshkov, Relative subsystems and quantum reference frame transformations (2021), arXiv:2110.13199 [quant-ph] .
- A.-C. de la Hamette, S. L. Ludescher, and M. P. Müller, Entanglement-asymmetry correspondence for internal quantum reference frames, Phys. Rev. Lett. 129, 260404 (2022a).
- C. Cepollaro and F. Giacomini, Quantum generalisation of Einstein’s Equivalence Principle can be verified with entangled clocks as quantum reference frames (2022), arXiv:2112.03303 [quant-ph] .
- L. Apadula, E. Castro-Ruiz, and Č. Brukner, Quantum Reference Frames for Lorentz Symmetry (2022), arXiv:2212.14081 [quant-ph] .
- V. Kabel, Č. Brukner, and W. Wieland, Quantum reference frames at the boundary of spacetime, Phys. Rev. D 108, 106022 (2023).
- T. Carette, J. Głowacki, and L. Loveridge, Operational quantum reference frame transformations (2023), arXiv:2303.14002 [quant-ph] .
- H. Gomes and J. Butterfield, The Hole Argument and Beyond: Part II: Treating Non-isomorphic Spacetimes, Journal of Physics: Conference Series 2533, 012003 (2023a).
- H. Gomes, Same-diff? Conceptual similarities between gauge transformations and diffeomorphisms. Part III: Representational conventions and relationism (2024a), arXiv:2402.09198 [physics.hist-ph] .
- D. K. Lewis, Counterpart theory and quantified modal logic, The Journal of Philosophy 65, 113–126 (1968).
- D. K. Lewis, Counterfactuals (Blackwell, Malden, Mass., 1973).
- D. Lewis, On the Plurality of Worlds (Wiley-Blackwell, Malden, Mass., 1986).
- H. Gomes and J. Butterfield, The Hole Argument and Beyond: Part I: The Story so Far, Journal of Physics: Conference Series 2533, 012002 (2023b).
- H. Gomes, Same-diff? Conceptual similarities between gauge transformations and diffeomorphisms. Part I: Symmetries and isomorphisms (2022), arXiv:2110.07203 [physics.hist-ph] .
- H. Gomes, Same-diff? Conceptual similarities between gauge transformations and diffeomorphisms. Part II: Challenges to sophistication (2023), arXiv:2110.07204 [physics.hist-ph] .
- F. Giacomini and Č. Brukner, Einstein’s Equivalence principle for superpositions of gravitational fields (2021), arXiv:2012.13754 [quant-ph] .
- F. Giacomini and Č. Brukner, Quantum superposition of spacetimes obeys Einstein’s Equivalence Principle, AVS Quantum Sci. 4, 015601 (2022).
- J. Foo, R. B. Mann, and M. Zych, Schrödinger’s black hole cat, International Journal of Modern Physics D 31, 2242016 (2022b).
- J. Foo, R. B. Mann, and M. Zych, Relativity and decoherence of spacetime superpositions (2023b), arXiv:2302.03259 [gr-qc] .
- R. Geroch, Limits of spacetimes, Communications in Mathematical Physics 13, 180–193 (1969).
- D. Jia, Causally neutral quantum physics (2019), arXiv:1902.05837 [quant-ph] .
- O. Oreshkov, F. Costa, and Č. Brukner, Quantum correlations with no causal order, Nature Communications 3, 1092 (2012).
- O. Oreshkov, Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics, Quantum 3, 206 (2019).
- N. Paunković and M. Vojinović, Causal orders, quantum circuits and spacetime: distinguishing between definite and superposed causal orders, Quantum 4, 275 (2020).
- V. Vilasini and R. Renner, Embedding cyclic causal structures in acyclic spacetimes: no-go results for process matrices (2022), arXiv:2203.11245 [quant-ph] .
- V. Gribov, Quantization of non-abelian gauge theories, Nuclear Physics B 139, 1–19 (1978).
- T. Diez and G. Rudolph, Slice theorem and orbit type stratification in infinite dimensions, Differential Geometry and its Applications 65, 176–211 (2019).
- J. A. Isenberg and J. E. Marsden, A slice theorem for the space of solutions of Einstein’s equations., Physics Reports 89, 179–222 (1982).
- C. Rovelli, A note on the formal structure of quantum constrained systems (1997), arXiv:gr-qc/9711028 [gr-qc] .
- M. Aspelmeyer, When Zeh Meets Feynman: How to Avoid the Appearance of a Classical World in Gravity Experiments, in From Quantum to Classical: Essays in Honour of H.-Dieter Zeh, edited by C. Kiefer (Springer International Publishing, Cham, 2022) pp. 85–95.
- L. Diósi, A universal master equation for the gravitational violation of quantum mechanics, Physics Letters A 120, 377–381 (1987).
- L. Diósi, Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A 40, 1165–1174 (1989).
- R. Penrose, On gravity’s role in quantum state reduction, Gen. Rel. Grav. 28, 581–600 (1996).
- B.-L. B. Hu and E. Verdaguer, Semiclassical and Stochastic Gravity: Quantum Field Effects on Curved Spacetime, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2020).
- D. N. Page and W. K. Wootters, Evolution without evolution: Dynamics described by stationary observables, Phys. Rev. D 27, 2885–2892 (1983).
- W. K. Wootters, “Time”replaced by quantum correlations, International Journal of Theoretical Physics 23, 701–711 (1984).
- V. Giovannetti, S. Lloyd, and L. Maccone, Quantum time, Phys. Rev. D 92, 045033 (2015).
- E. Adlam, N. Linnemann, and J. Read, Constructive Axiomatics in Spacetime Physics Part III: A Constructive Axiomatic Approach to Quantum Spacetime (2022), arXiv:2208.07249 [gr-qc] .
- N. Bamonti, What is a reference frame in general relativity? (2023), arXiv:2307.09338 [physics.hist-ph] .
- M. Christodoulou and C. Rovelli, On the possibility of laboratory evidence for quantum superposition of geometries, Physics Letters B 792, 64–68 (2019).
- C. Wüthrich, Challenging the spacetime structuralist, Philosophy of Science 76, 1039–1051 (2009).
- H. Westman and S. Sonego, Coordinates, observables and symmetry in relativity, Annals of Physics 324, 1585–1611 (2009).
- E. Kretschmann, Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche Relativitätstheorie, Annalen der Physik 358, 575–614 (1918).
- A. Komar, Construction of a complete set of independent observables in the general theory of relativity, Phys. Rev. 111, 1182–1187 (1958).
- J. B. Barbour, On general covariance and best matching, in Physics Meets Philosophy at the Planck Scale: Contemporary Theories in Quantum Gravity, edited by C. Callender and N. Huggett (Cambridge University Press, 2001) p. 199–212.
- C. Goeller, P. A. Höhn, and J. Kirklin, Diffeomorphism-invariant observables and dynamical frames in gravity: reconciling bulk locality with general covariance (2022), arXiv:2206.01193 [hep-th] .
- J. Tambornino, Relational Observables in Gravity: a Review, SIGMA 8, 017 (2012), arXiv:1109.0740 [gr-qc] .
- K. Giesel and T. Thiemann, Scalar Material Reference Systems and Loop Quantum Gravity, Class. Quant. Grav. 32, 135015 (2015), arXiv:1206.3807 [gr-qc] .
- L. Marchetti and D. Oriti, Effective dynamics of scalar cosmological perturbations from quantum gravity, Journal of Cosmology and Astroparticle Physics 2022 (07), 004.
- C. Marletto and V. Vedral, Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Phys. Rev. Lett. 119, 240402 (2017).
- J. Oppenheim, A postquantum theory of classical gravity?, Phys. Rev. X 13, 041040 (2023).
- M. Giovanelli, Nothing but coincidences: the point-coincidence and Einstein’s struggle with the meaning of coordinates in physics, European Journal for Philosophy of Science 11, 45 (2021).
- C. Rovelli, Partial observables, Phys. Rev. D 65, 124013 (2002).
- H. Gomes, Completing Complete Observables (2024b), manuscript in preparation.
- C. Rovelli, What is observable in classical and quantum gravity?, Classical and Quantum Gravity 8, 297–316 (1991).
- B. Dittrich, Partial and complete observables for Hamiltonian constrained systems, Gen. Rel. Grav. 39, 1891–1927 (2007), arXiv:gr-qc/0411013 .
- B. Dittrich, Partial and complete observables for canonical general relativity, Class. Quant. Grav. 23, 6155–6184 (2006), arXiv:gr-qc/0507106 .
- R. Faleiro, N. Paunkovic, and M. Vojinovic, Operational interpretation of the vacuum and process matrices for identical particles, Quantum 7, 986 (2023).
- H. Gomes and A. Riello, The quasilocal degrees of freedom of Yang-Mills theory, SciPost Phys. 10, 130 (2021).
- P. A. Höhn, A. Russo, and A. R. H. Smith, Matter relative to quantum hypersurfaces, (2023b), arXiv:2308.12912 [quant-ph] .
- W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, Journal of High Energy Physics 2016, 102 (2016), arXiv:1601.04744 [hep-th] .
- A. J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories, Journal of High Energy Physics 2018, 21 (2018), arXiv:1706.05061 [hep-th] .
- L. Freidel, M. Geiller, and D. Pranzetti, Edge modes of gravity. Part I. Corner potentials and charges, JHEP 11, 026, arXiv:2006.12527 [hep-th] .
- H. Gomes and A. Riello, The observer’s ghost: notes on a field space connection, Journal of High Energy Physics 2017, 17 (2017).
- S. Carrozza and P. A. Höhn, Edge modes as reference frames and boundary actions from post-selection, Journal of High Energy Physics 2022, 172 (2022).
- S. Carrozza, S. Eccles, and P. A. Höhn, Edge modes as dynamical frames: charges from post-selection in generally covariant theories (2022), arXiv:2205.00913 [hep-th] .
- H. Gomes and A. Riello, Unified geometric framework for boundary charges and particle dressings, Phys. Rev. D 98, 025013 (2018).
- H. Gomes, Gauging the boundary in field-space, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67, 89–110 (2019).
Collections
Sign up for free to add this paper to one or more collections.