Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Simple realization of a fragile topological lattice with quasi flat-bands in a microcavity array (2402.09665v1)

Published 15 Feb 2024 in cond-mat.mes-hall and physics.optics

Abstract: Topological flat bands (TFBs) are increasingly recognized as an important paradigm to study topological effects in the context of strong correlation physics. As a representative example, recently it has been theoretically proposed that the topological non-triviality offers a unique contribution to flat-band superconductivity, which can potentially lead to a higher critical temperature of superconductivity phase transition. Nevertheless, the topological effects within flat bands in bosonic systems, specifically in the context of Bose-Einstein condensation (BEC), are less explored. It has been shown theoretically that non-trivial topological and geometric properties will also have a significant influence in bosonic condensates as well. However, potential experimental realizations have not been extensively studied yet. In this work, we introduce a simple photonic lattice from coupled Kagome and triangular lattices designed based on topological quantum chemistry theory, which supports topologically nontrivial quasi-flat bands. Besides band representation analysis, the non-triviality of these quasi-flat bands is also confirmed by Wilson loop spectra which exhibit winding features. We further discuss the corresponding experimental realization in a microcavity array for future study supporting the potential extension to condensed exciton-polaritons. Notably, we showed that the inevitable in-plane longitudinal-transverse polarization splitting in optical microcavities will not hinder the construction of topological quasi-flat bands. This work acts as an initial step to experimentally explore the physical consequence of non-trivial topology and quantum geometry in quasi-flat bands in bosonic systems, offering potential channels for its direct observation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. S. Peotta and P. Törmä, Superfluidity in topologically nontrivial flat bands, Nature communications 6, 8944 (2015).
  2. H. C. Po, H. Watanabe, and A. Vishwanath, Fragile topology and wannier obstructions, Physical review letters 121, 126402 (2018).
  3. J. Zak, Band representations of space groups, Physical Review B 26, 3010 (1982).
  4. A. Julku, G. M. Bruun, and P. Törmä, Excitations of a bose-einstein condensate and the quantum geometry of a flat band, Physical Review B 104, 144507 (2021a).
  5. A. Julku, G. M. Bruun, and P. Törmä, Quantum geometry and flat band bose-einstein condensation, Physical review letters 127, 170404 (2021b).
  6. I. Lukin, A. Sotnikov, and A. Kruchkov, Unconventional superfluidity and quantum geometry of topological bosons, arXiv preprint arXiv:2307.08748  (2023).
  7. S. Xu, Y. Wang, and R. Agarwal, Absence of topological protection of the interface states in ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT photonic crystals, Phys. Rev. Lett. 131, 053802 (2023).
  8. T. Mizoguchi and Y. Hatsugai, Molecular-orbital representation of generic flat-band models, Europhysics Letters 127, 47001 (2019).
  9. A. Alexandradinata, X. Dai, and B. A. Bernevig, Wilson-loop characterization of inversion-symmetric topological insulators, Physical Review B 89, 155114 (2014).
  10. T. Byrnes, N. Y. Kim, and Y. Yamamoto, Exciton–polariton condensates, Nature Physics 10, 803 (2014).
  11. A. Nalitov, D. Solnyshkov, and G. Malpuech, Polariton z topological insulator, Physical review letters 114, 116401 (2015b).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com