Guided Quantum Compression for High Dimensional Data Classification (2402.09524v2)
Abstract: Quantum machine learning provides a fundamentally different approach to analyzing data. However, many interesting datasets are too complex for currently available quantum computers. Present quantum machine learning applications usually diminish this complexity by reducing the dimensionality of the data, e.g., via auto-encoders, before passing it through the quantum models. Here, we design a classical-quantum paradigm that unifies the dimensionality reduction task with a quantum classification model into a single architecture: the guided quantum compression model. We exemplify how this architecture outperforms conventional quantum machine learning approaches on a challenging binary classification problem: identifying the Higgs boson in proton-proton collisions at the LHC. Furthermore, the guided quantum compression model shows better performance compared to the deep learning benchmark when using solely the kinematic variables in our dataset.
- Tilman Plehn, Anja Butter, Barry Dillon, and Claudius Krause, “Modern machine learning for lhc physicists,” (2022), arXiv:2211.01421 [hep-ph] .
- Dan Guest, Kyle Cranmer, and Daniel Whiteson, “Deep learning and its application to LHC physics,” Annual Review of Nuclear and Particle Science 68, 161–181 (2018).
- Georgia Karagiorgi, Gregor Kasieczka, Scott Kravitz, et al., “Machine learning in the search for new fundamental physics,” (2021), arXiv:2112.03769 [hep-ph] .
- Vasilis Belis, Patrick Odagiu, and Thea Klaeboe Aarrestad, “Machine learning for anomaly detection in particle physics,” Rev. Phys. 12, 100091 (2024), arXiv:2312.14190 [physics.data-an] .
- L. K. Grover, “A fast quantum mechanical algorithm for database search,” (1996), arXiv:quant-ph/9605043 [quant-ph] .
- Peter W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM J. Comput. 26, 1484–1509 (1997).
- Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, et al., “Quantum supremacy using a programmable superconducting processor,” Nature 574, 505–510 (2019).
- Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, et al., “Quantum computational advantage using photons,” Science 370, 1460–1463 (2020).
- Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F. Bulmer, Filippo M. Miatto, Leonhard Neuhaus, Lukas G. Helt, Matthew J. Collins, et al., “Quantum computational advantage with a programmable photonic processor,” Nature 606, 75–81 (2022).
- Ryan Babbush, Dominic W. Berry, Robin Kothari, Rolando D. Somma, and Nathan Wiebe, “Exponential quantum speedup in simulating coupled classical oscillators,” (2023), 10.48550/arXiv.2303.13012, arXiv:2303.13012 [quant-ph].
- J. Biamonte et al., “Quantum machine learning,” Nature 549, 195–202 (2017).
- M. Schuld and F. Petruccione, Supervised Learning with Quantum Computers (Springer International Publishing, 2018).
- Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini, “Parameterized quantum circuits as machine learning models,” Quantum Science and Technology 4, 043001 (2019).
- V. Havlíček, A.D. Córcoles, K. Temme, et al., “Supervised learning with quantum-enhanced feature spaces,” Nature 567, 209–212 (2019).
- M. Schuld and N. Killoran, “Quantum machine learning in feature hilbert spaces,” Physical Review Letters 122 (2019), 10.1103/physrevlett.122.040504.
- Maria M. Schuld et al., “Circuit-centric quantum classifiers,” Phys. Rev. A 101, 032308 (2020).
- P. Rebentrost et al., ‘‘Quantum support vector machine for big data classification,” Physical review letters 113, 130503 (2014).
- Y. Liu et al., “A rigorous and robust quantum speed-up in supervised machine learning,” Nat. Phys. 17, 1013–1017 (2021).
- H.Y. Huang et al., “Power of data in quantum machine learning,” Nature Communications 12, 2631 (2021).
- H.Y. Huang et al., “Quantum advantage in learning from experiments,” Science 376, 1182–1186 (2022).
- Till Muser, Elias Zapusek, Vasilis Belis, and Florentin Reiter, “Provable advantages of kernel-based quantum learners and quantum preprocessing based on grover’s algorithm,” (2023), arXiv:2309.14406 [quant-ph] .
- Niklas Pirnay, Ryan Sweke, Jens Eisert, and Jean-Pierre Seifert, “A super-polynomial quantum-classical separation for density modelling,” Phys. Rev. A 107, 042416 (2023), arXiv:2210.14936 .
- Casper Gyurik and Vedran Dunjko, “On establishing learning separations between classical and quantum machine learning with classical data,” ArXiv e-prints (2022), arxiv:2208.06339 .
- Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre, “Data re-uploading for a universal quantum classifier,” Quantum 4, 226 (2020), arXiv:1907.02085 [quant-ph].
- Maria Schuld, “Supervised quantum machine learning models are kernel methods,” (2021), arXiv:2101.11020 .
- Takahiro Goto, Quoc Hoan Tran, and Kohei Nakajima, “Universal approximation property of quantum machine learning models in quantum-enhanced feature spaces,” Phys. Rev. Lett. 127, 090506 (2021).
- A. Abbas et al., “The power of quantum neural networks,” Nature Computational Science 1, 403–409 (2021).
- M.C. Caro et al., “Generalization in quantum machine learning from few training data,” Nature Communications 13, 4919 (2022), arXiv:2111.05292 .
- Sofiene Jerbi, Lukas J. Fiderer, Hendrik Poulsen Nautrup, Jonas M. Kübler, Hans J. Briegel, and Vedran Dunjko, “Quantum machine learning beyond kernel methods,” Nature Communications 14, 517 (2023).
- S.L. Wu et al., “Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the lhc,” Phys. Rev. Research 3, 033221 (2021a).
- Sau Lan Wu, Jay Chan, Wen Guan, et al., “Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the lhc on ibm quantum computer simulator and hardware with 10 qubits,” 48, 125003 (2021b).
- K. Terashi et al., “Event Classification with Quantum Machine Learning in High-Energy Physics,” Comput. Softw. Big Sci. 5, 2 (2021), arXiv:2002.09935 [physics.comp-ph] .
- V. Belis et al., ‘‘Higgs analysis with quantum classifiers,” EPJ Web Conf. 251, 03070 (2021).
- A. Blance and M. Spannowsky, “Quantum Machine Learning for Particle Physics using a Variational Quantum Classifier,” (2020), 10.1007/JHEP02(2021)212, arXiv:2010.07335 [hep-ph] .
- Alessio Gianelle, Patrick Koppenburg, Donatella Lucchesi, Davide Nicotra, Eduardo Rodrigues, Lorenzo Sestini, Jacco de Vries, and Davide Zuliani, “Quantum machine learning for b-jet charge identification,” Journal of High Energy Physics 2022, 14 (2022).
- J.J. Martínez de Lejarza et al., “Quantum clustering and jet reconstruction at the lhc,” Phys. Rev. D 106, 036021 (2022).
- C. Tüysüz et al., “Particle track reconstruction with quantum algorithms,” EPJ Web of Conferences 245, 09013 (2020).
- D. Magano et al., “Quantum speedup for track reconstruction in particle accelerators,” Physical Review D 105, 076012 (2022), publisher: American Physical Society.
- V.S. Ngairangbam et al., “Anomaly detection in high-energy physics using a quantum autoencoder,” Phys. Rev. D 105, 095004 (2022).
- Julian Schuhmacher, Laura Boggia, Vasilis Belis, Ema Puljak, Michele Grossi, Maurizio Pierini, Sofia Vallecorsa, Francesco Tacchino, Panagiotis Barkoutsos, and Ivano Tavernelli, “Unravelling physics beyond the standard model with classical and quantum anomaly detection,” Mach. Learn. Sci. Tech. 4, 045031 (2023), arXiv:2301.10787 [hep-ex] .
- Sulaiman Alvi, Christian Bauer, and Benjamin Nachman, “Quantum anomaly detection for collider physics,” Journal of High Energy Physics 2023, 220 (2023), arXiv:2206.08391 [hep-ex, physics:hep-ph, physics:physics, physics:quant-ph].
- Kinga Anna Woźniak, Vasilis Belis, Ema Puljak, et al., “Quantum anomaly detection in the latent space of proton collision events at the LHC,” (2023), arXiv:2301.10780 [quant-ph] .
- Jorge J. Martínez de Lejarza, Leandro Cieri, Michele Grossi, Sofia Vallecorsa, and Germán Rodrigo, “Loop feynman integration on a quantum computer,” (2024), arXiv:2401.03023 [hep-ph] .
- Gabriele Agliardi, Michele Grossi, Mathieu Pellen, and Enrico Prati, “Quantum integration of elementary particle processes,” Physics Letters B 832, 137228 (2022).
- “Quantum computing for high-energy physics: State of the art and challenges. summary of the QC4HEP working group,” (2023), arXiv:2307.03236 [quant-ph] .
- Dana H Ballard, “Modular learning in neural networks,” in Proceedings of the sixth National Conference on artificial intelligence-volume 1 (1987) pp. 279–284.
- Mauro Donega, Gregor Kasieczka, Tobias Lösche, Pasquale Musella, Christina Reissel, and Rainer Wallny, “Attention and dynamic graph convolution neural network in the context of classifying tt¯H(bb¯)𝑡¯𝑡𝐻𝑏¯𝑏t\bar{t}H(b\bar{b})italic_t over¯ start_ARG italic_t end_ARG italic_H ( italic_b over¯ start_ARG italic_b end_ARG ) vs. tt¯(bb¯)𝑡¯𝑡𝑏¯𝑏t\bar{t}(b\bar{b})italic_t over¯ start_ARG italic_t end_ARG ( italic_b over¯ start_ARG italic_b end_ARG ) in the semi-leptonic top quark pair decay channel,” (2021), ML4Jets.
- CMS Collaboration, “Measurement of the top quark polarization and tt¯t¯t\mathrm{t\bar{t}}roman_t over¯ start_ARG roman_t end_ARG spin correlations using dilepton final states in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 tev,” Physical Review D 100 (2019), 10.1103/PhysRevD.100.072002.
- J. Kübler et al., “The inductive bias of quantum kernels,” in Advances in Neural Information Processing Systems, Vol. 34, edited by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan (Curran Associates, Inc., 2021) p. 12661–12673, 2106.03747 .
- Yann LeCun, “Phd thesis: Modeles connexionnistes de l’apprentissage (connectionist learning models),” (1987).
- Geoffrey E Hinton and Richard Zemel, “Autoencoders, minimum description length and helmholtz free energy,” Advances in neural information processing systems 6 (1993).
- Diederik P. Kingma and Max Welling, “Auto-Encoding Variational Bayes,” (2013), arXiv:1312.6114 [stat.ML] .
- Kamil Deja, Jan Dubiński, Piotr Nowak, Sandro Wenzel, Przemysław Spurek, and Tomasz Trzciński, “End-to-end Sinkhorn Autoencoder with Noise Generator,” IEEE Access 9, 7211–7219 (2021), arXiv:2006.06704 [cs.LG] .
- Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon, “Dirichlet variational autoencoder,” Pattern Recognition 107, 107514 (2020).
- Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang, “Adversarially regularized graph autoencoder for graph embedding,” arXiv preprint arXiv:1802.04407 (2018).
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Physical Review A 98, 032309 (2018).
- Adrián Pérez-Salinas, Juan Cruz-Martinez, Abdulla A. Alhajri, and Stefano Carrazza, “Determining the proton content with a quantum computer,” Phys. Rev. D 103, 034027 (2021), arXiv:2011.13934 [hep-ph] .
- Su Yeon Chang, Steven Herbert, Sofia Vallecorsa, Elías F. Combarro, and Ross Duncan, “Dual-parameterized quantum circuit gan model in high energy physics,” EPJ Web of Conferences 251, 03050 (2021), arXiv:2103.15470 [quant-ph].
- Oriel Kiss, Michele Grossi, Enrique Kajomovitz, and Sofia Vallecorsa, “Conditional born machine for monte carlo event generation,” Physical Review A 106, 022612 (2022), arXiv:2205.07674 [hep-ex, physics:quant-ph].
- Andrea Delgado and Kathleen E. Hamilton, “Unsupervised quantum circuit learning in high energy physics,” Physical Review D 106, 096006 (2022), arXiv:2203.03578 [hep-ex, physics:quant-ph].
- Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer, “The effect of data encoding on the expressive power of variational quantum machine learning models,” Physical Review A 103, 032430 (2021), arXiv:2008.08605 [quant-ph, stat].
- Lei Le, Andrew Patterson, and Martha White, “Supervised autoencoders: Improving generalization performance with unsupervised regularizers,” in Advances in Neural Information Processing Systems, Vol. 31 (2018).
- Partoo Vafaeikia, Khashayar Namdar, and Farzad Khalvati, “A brief review of deep multi-task learning and auxiliary task learning,” (2020), arXiv:2007.01126 [cs.LG] .
- Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,” (2017), arXiv:1412.6980 [cs.LG] .
- Tyson Jones and Julien Gacon, “Efficient calculation of gradients in classical simulations of variational quantum algorithms,” (2020), arXiv:2009.02823 [quant-ph] .
- Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran, “Evaluating analytic gradients on quantum hardware,” Phys. Rev. A 99, 032331 (2019).
- The CMS collaboration, “Search for tt¯H𝑡¯𝑡𝐻t\bar{t}{H}italic_t over¯ start_ARG italic_t end_ARG italic_H production in the H→bb¯→𝐻𝑏¯𝑏{H}\to b\bar{b}italic_H → italic_b over¯ start_ARG italic_b end_ARG decay channel with tt¯𝑡¯𝑡t\bar{t}italic_t over¯ start_ARG italic_t end_ARG leptonic decays in proton-proton collisions at s=13TeV𝑠13TeV\sqrt{s}=13\,\mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV,” Journal of High Energy Physics 2019, 26 (2019).
- The ATLAS Collaboration, ‘‘Measurement of higgs boson decay into b-quarks in associated production with a top-quark pair in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the atlas detector,” Journal of High Energy Physics 2022, 97 (2022), arXiv:2111.06712 .
- S. Kullback and R. A. Leibler, “On Information and Sufficiency,” The Annals of Mathematical Statistics 22, 79 – 86 (1951).
- Christina Reissel and Vasilis Belis, “tt¯H(bb¯)𝑡¯𝑡𝐻𝑏¯𝑏t\bar{t}H(b\bar{b})italic_t over¯ start_ARG italic_t end_ARG italic_H ( italic_b over¯ start_ARG italic_b end_ARG ) dataset in the semi-leptonic decay channel,” (2024).
- Ville Bergholm, Josh Izaac, Maria Schuld, et al., “PennyLane: Automatic differentiation of hybrid quantum-classical computations,” (2022), arXiv:1811.04968 [quant-ph] .
- “Deep Fried Website,” https://github.com/efskap/deepfriedmemes.com, accessed: 2024-01-02.