Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Biased Estimator Channels for Classical Shadows (2402.09511v2)

Published 14 Feb 2024 in quant-ph

Abstract: Extracting classical information from quantum systems is of fundamental importance, and classical shadows allow us to extract a large amount of information using relatively few measurements. Conventional shadow estimators are unbiased and thus approach the true mean in the infinite-sample limit. In this work, we consider a biased scheme, intentionally introducing a bias by rescaling the conventional classical shadows estimators can reduce the error in the finite-sample regime. The approach is straightforward to implement and requires no quantum resources. We analytically prove average case as well as worst- and best-case scenarios, and rigorously prove that it is, in principle, always worth biasing the estimators. We illustrate our approach in a quantum simulation task of a $12$-qubit spin-ring problem and demonstrate how estimating expected values of non-local perturbations can be significantly more efficient using our biased scheme.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
  2. T. Sugiyama, P. S. Turner, and M. Murao, Precision-guaranteed quantum tomography, Phys. Rev. Lett. 111, 160406 (2013).
  3. H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Physics 16, 1050 (2020).
  4. H.-Y. Huang, R. Kueng, and J. Preskill, Efficient Estimation of Pauli Observables by Derandomization, Phys. Rev. Lett.  127, 030503 (2021), arXiv:2103.07510 [quant-ph] .
  5. A. Zhao, N. C. Rubin, and A. Miyake, Fermionic partial tomography via classical shadows, Phys. Rev. Lett. 127, 110504 (2021).
  6. C. Ferrie and R. Blume-Kohout, Maximum likelihood quantum state tomography is inadmissible, arXiv e-prints , arXiv:1808.01072 (2018), arXiv:1808.01072 [quant-ph] .
  7. A. Scott and C.-F. Wu, On the asymptotic distribution of ratio and regression estimators, Journal of the American Statistical Association 76, 98 (1981).
  8. B. Koczor and S. C. Benjamin, Quantum analytic descent, Physical Review Research 4, 023017 (2022a).
  9. B. Koczor and S. C. Benjamin, Quantum natural gradient generalized to noisy and nonunitary circuits, Physical Review A 106, 062416 (2022b).
  10. G. Boyd and B. Koczor, Training variational quantum circuits with covar: Covariance root finding with classical shadows, Phys. Rev. X 12, 041022 (2022).
  11. A. Zhao and A. Miyake, Group-theoretic error mitigation enabled by classical shadows and symmetries, arXiv preprint arXiv:2310.03071  (2023).
  12. T. Jones and S. Benjamin, Questlink—mathematica embiggened by a hardware-optimised quantum emulator*, Quantum Science and Technology 5, 034012 (2020).
  13. R. Meister, pyQuEST - A Python interface for the Quantum Exact Simulation Toolkit (2022).
  14. A. Richards, University of Oxford Advanced Research Computing  (2015).
  15. A. Gresch and M. Kliesch, Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping, arXiv e-prints , arXiv:2301.03385 (2023), arXiv:2301.03385 [quant-ph] .
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com